
1

FoREnSiC– An Automatic Debugging
Environment for C Programs

Roderick Bloem∗ Rolf Drechsler† Görschwin Fey† Alexander Finder† Georg Hofferek∗

Robert Könighofer∗ Jaan Raik‡ Urmas Repinski‡ André Sülflow†
∗Graz University of Technology, Austria †University of Bremen, Germany

‡Tallinn University of Technology, Estonia

I. ABOUT FORENSIC
FoREnSiC is an extensible environment making various

debugging methods for C programs accessible in a unified
way. FoREnSiC is short for “Formal Repair Environment
for Simple C”, but it has already outgrown its name in two
respects. First, it does not only perform error correction, but
also error detection and localization. Second, it does not only
apply formal methods, but also semi-formal and dynamic
methods, implemented in different back-ends. The back-ends
are accessible in a unified way allowing for trade-offs between
scalability and reasoning power. Additionally, FoREnSiC
also serves as a framework for implementing new program
analysis, verification, and debugging techniques. FoREnSiC
is available as open-source tool at [1].

FoREnSiC consists of three functional parts: the front-
end, the model, and the back-ends. Figure 1 illustrates the
architecture. A C program is the main input. The front-end is
a GCC plug-in that parses this program and builds an internal
model in form of a flow graph.

Fig. 1. The architecture of FoREnSiC.

FoREnSiC currently encompasses three back-ends de-
scribed in the following application scenario.

II. APPLICATION SCENARIO

Assume we draft the C program in Fig. 2 to implement an
algorithm to compute the Greatest Common Divisor (GCD)
of two integer numbers. We use FoREnSiC’s symbolic back-
end relying on symbolic execution and SMT-solving [2] to
compare the program with the Euclidean algorithm, which
serves as a golden reference model. It uses model-based diag-
nosis and a repair based on templates to synthesize repairing
expressions. The back-end detects an error and automated
debugging commences. First, error localization reports the “0”
in line 4 as potentially faulty. Next, the back-end synthesizes
the following expressions to substitute “0” with: u + v and
4294967295 & u | 4294967295 & v. The reason is
clear: our program computes gcd(0,x) = gcd(x,0) =
0 for any x, but the result should be x. Replacing “0” with
“u + v” fixes this bug. The second suggestion is “u | v”,
which is correct as well. Which fix should be taken is up to us.
The symbolic back-end takes about 6 seconds to locate and fix

This work was supported in part by the European Commission through
project DIAMOND (FP7-2009-IST-4-248613), and by the Austrian Science
Fund (FWF) through the national research network RiSE (S11406-N23).

1 unsigned gcd (unsigned u ,
unsigned v){

2 unsigned sh = 0 , res ;
3 if (u == 0 | | v == 0) {
4 res = 0 ;
5 return res ;
6 }
7 while (((u |v) & 1) == 0){
8 u >>= 1 ; v >>= 1 ;
9 ++sh ;

10 }
11 while ((u & 1) == 0)
12 u >>= 1 ;
13 do{

14 while ((v & 1) == 0)
15 v >>= 1 ;
16 if (u <= v){
17 v += u ;
18 } else{
19 unsigned diff = u − v ;
20 u = v ;
21 v = diff ;
22 }
23 v >>= 1 ;
24 } while (v != 0) ;
25 res = u << sh ;
26 return res ;
27 }

Fig. 2. Draft for a C program

this bug. When analyzing the revised program in more detail,
the back-end detects another error but it is unable to locate or
fix it within reasonable time. Therefore, we now switch to the
simulation-based back-end.

The simulation-based back-end fixes errors using
simulation-based verification, error localization, and mutation-
based repair. For the GCD example, the verification step
fails if sufficient test cases are provided. Diagnosis starts by
ranking statements according to their suspiciousness. For each
fault candidate mutation-based repair is applied. The mutated
designs are verified by simulation to check which mutation
constitutes a repair. For our example, the back-end finds a fix
after 149 mutations by replacing the assignment operator +=
in line 17 by -=. While the simulation-based back-end had
no difficulties debugging the second bug, it could not come
up with the suggestions produced by the symbolic back-end
for the first bug. The reason is that a mutation from 0 to u |
v would be too far-fetched. This nicely illustrates how well
the different back-ends complement each other.

In a next step, assume we would like to implement this
algorithm in hardware. We use the equivalence-checking back-
end to check our program for equivalence with an HDL im-
plementation using WoLFram [3]. The C program to calculate
the GCD is compared to an HDL description with a data-width
of 10 bit and equivalence was proven. The proof took 2 hours
and 45 minutes. The hardware design was unrolled for up to
78 time cycles. Here, the C program is not required to contain
timing information.

REFERENCES

[1] R. Bloem, R. Drechsler, G. Fey, A. Finder, G. Hofferek, R. Könighofer,
J. Raik, U. Repinski, and A. Sülflow. FoREnSiC - A Formal Repair
Environment for Simple C. http://www.informatik.uni-bremen.de/agra/
eng/forensic.php, 2011.

[2] R. Könighofer and R. Bloem. Automated error localization and correction
for imperative programs. In International Conference on Formal Methods
in Computer Aided Design, 2011. To appear.

[3] A. Sülflow, U. Kühne, G. Fey, D. Große, and R. Drechsler. WoLFram – a
word level framework for formal verification. In International Workshop
on Rapid System Prototyping, pages 11–17, 2009.

http://www.informatik.uni-bremen.de/agra/eng/forensic.php
http://www.informatik.uni-bremen.de/agra/eng/forensic.php

	About FoREnSiC
	Application Scenario
	References

