

Partially supported by the E.C. funded 2PARMA FP7-ICT-2009-4-248716 Project – http://www.2parma.eu

Adaptive Heap Management on Many-Core Platforms

Ioannis Koutras, Alexandros Bartzas and Dimitrios Soudris

Institute of Communication and Computer Systems (ICCS) – National Technical University of Athens, Greece
{joko, alexis, dsoudris}@microlab.ntua.gr

Abstract

The current design trend in System-on-Chips (SoCs) utilizes
heavily multiple processors and is therefore shifted towards
the Multi-Processor SoC (MPSoC) design paradigm. As
technology allows the integration of an aggressively
increasing number of transistors, the concept of many-core
computing steadily emerges, suggesting tens of processor
cores integrated in one chip as a computing fabric. Without
any question, memory management on such architectures
could contribute notably in improving performance and
mitigating the scalability bottleneck, as the processors
struggle constantly to access data from shared memory
locations. This bottleneck could have an even greater impact
on many-core architectures designed for the embedded
system context due to the small size of memories used in
such hardware.

Applications developed for such systems are slowly
adapting to this model while trying to exploit every possible
resource by using data- and task-level parallelism. This
leads to applications with highly dynamic behavior and
parallel execution of their tasks. This increased dynamism
leads to unexpected memory footprint and fragmentation
variations, which are difficult to be identified adequately at
the design time. Developing dynamic multi-threaded
applications using worst-case estimates for managing
memory in a static manner would impose severe overheads
in memory footprint and power consumption. In order to
avoid such type of costly over-estimations, developers are
motivated to efficiently utilize dynamic memory.

Dynamic memory managers (DMM) are responsible for
organizing the dynamically allocated data in memory and
also servicing the application’s memory requests
(allocation/de-allocation) that happen during the
application’s execution [3]. In typical C programming,
dynamic memory allocation is performed through malloc()/
realloc()/free() function calls.

Memory management is one of the key challenges in the
design of computing systems where the memory is often the
main bottleneck [2]. The problem scales disproportionally as
new systems are based on many-core architectures where
the cores have to struggle accessing a limited amount of
resources. Moreover, the excessive variations of modern
systems, both in hardware and in software, makes necessary
the usage of dynamic memory management (DMM)
mechanisms. Extensive research has been conducted for
general-purpose DMM, which targets single processor or
multi-processor domain. However, the inherent generality of
existing DMM eliminates the potential for customization
optimizations.

Here we present dmmlib, a highly portable DMM
library written in C (Figure 1). It allows developers to
generate custom heap managers by choosing the desired
features and policies. Previous analysis indicated that there
is a need for extending the current status in multi-threaded
DMM towards adaptive implementations that can be fine-
tuned during the runtime of the system [1][4]. Software-
controlled runtime tuning will be the main future approach
to system designs due to the excessive variations in both
hardware and software. In dmmlib we have completely
decoupled the DMM’s data structures from their
manipulation services, enabling the runtime switching of
multiple DMM management policies and mechanisms that
are applied to the same data structures in a mutual exclusive
manner. In addition, we properly extended the DMM
structures to incorporate runtime software monitoring
mechanisms regarding each of the allocated heaps’ status.
These runtime monitors form the actual data that guide the
runtime decision-making process regarding the DMM’s
reconfiguration.

Figure 1: Adaptive heap manager (grey boxes support

adaptivity).

References
[1] S. Xydis et al., “Runtime Tuning of Dynamic Memory

Management For Mitigating Footprint-Fragmentation
Variations,” in Proc. of PARMA. VDE Verlag, 2011.

[2] E. Berger et al., “Hoard: A scalable memory allocator for
multithreaded applications,” in ACM SIGPLAN Notices,
35(11): 117–128, 2000.

[3] P.R. Wilson et al., “Dynamic storage allocation: A survey and
critical review,” in IWMM, 1995.

[4] I. Koutras et al., “Efficient Memory Allocations on a Many-
Core Accelerator,” to appear in Proc. of PARMA, 2012.

malloc()/realloc()/free()

internal architecture

data coherency

inter-heap allocation

inter-heap de-allocation

inter-heap fragmentation

block structure

pool organization

block allocation

block de-allocation

split mechanisms coalesce mechanisms

adaptive heap manager

