
Department of Computer Science
Integrated Circuits and Systems Lab

FripGa: A Prototypical Design Tool for 
Embedded Multi-Core Systems-on-Chip

Alexander Biedermann and Sorin A. Huss
biedermann@iss.tu-darmstadt.de, huss@iss.tu-darmstadt.de

Dipl.-Inform. Alexander Biedermann
Technische Universität Darmstadt
Integrated Circuits and Systems Lab
Hochschulstraße 10
64289 Darmstadt, Germany

Prof. Dr.-Ing. Sorin A. Huss
Technische Universität Darmstadt
Integrated Circuits and Systems Lab
Hochschulstraße 10
64289 Darmstadt, Germany

Idea

FripGa: Key Features

Challenges

Application Example Future Work

Additional Features Comparison of Workflow Efficiency

 Today’s FPGAs offer plenty of logic resources

 Complex Systems-on-Chip may consist of several dozens of processors and HW IP Cores

 Design tools often still tailored to “single processor with (HW) co-processors” designs

Develop prototypical design tool with usability features which future commercial tool suites 
should provide soon

 Expand functionality of MoC editor, e.g., by exploiting known MoC transformations from system 

level to component level

 Exploit virtualization schemes to further abstract from strict software-processor bindings and 

automatically choose optimal number of processors employed in design

(see poster “Scalable Multi-Core Virtualization for Embedded System-on-Chip Architectures“ on 

DATE’12 Friday Workshop: Quo Vadis Virtual Platforms?)

Multi Chip Designs
 Scatter designs over multiple FPGAs

 Automatic mapping of modules to FPGAs based 

on user constraints (max. number of FPGAs, 

max communication speed, or minimal resource 

consumption)

User Interface
 Build HW/SW designs from scratch

 Instantiate, duplicate, connect, and configure 

embedded processors and IP cores

 TCL scripting engine for all features

Editor to integrate Models of Computation (MoC)
 MoC processes may be partitioned to either SW 

or HW by the designer

 MoC processes may be connected to common 

modules such as embedded processors or HW IP 

cores

 Visual representation, editable at any time

 XML file structure for efficient file handling

 Wizard to import legacy IP cores or to create new ones

 Grouping of modules to functional units to use them as hierarchical design primitives

 Full compatibility to existing commercial tool suites, e.g. Xilinx Platform Studio

 Built-In IP cores for data path manipulation

Handling of Embedded Software Projects
 Import and edit legacy software projects for 

embedded processors

 Create and edit new software projects

 Easy binding of SW projects to processors

Switching between Software and Hardware 
Implementations
 Allows for smooth and fast design space 

exploration

 Guided by a wizard to match interface 

connections

Partial Reconfiguration
 Avoids manual floor planning

 Automatic instantiation of partial 

reconfigurable regions on FPGA chip area

 Automatic resource analysis to determine sizes 

of partial reconfigurable regions

Xilinx XPS FripGa

Common operations MC1 Time MC1 Time

Add embedded processor to design 47 180 s 1 1 s

Establish module-to-module connection 12 28 s 1 1 s

Duplicate group of modules n.a. n.a. 2 6 s

Add partial reconfigurable modules >100 >1800 s 9 25 s
1 MC = mouse clicks

 Parallelized FIR filter for image scaling designed in FripGa

 Sub-pixel resampling done either in hardware or in software

 Design with up to 18 soft-core processors created in less than 

one hour

 Easy switching between different implementations or levels of 

parallelization

 How to enable smooth, fast, and safe creation of complex Systems-on-Chip?

 How to avoid repetitive, error-prone user inputs?

 How to visualize complex Systems-on-Chip?

 How to support easy design space exploration?

 How to include methodologies that abstract from underlying architectures?


