FripGa: A Prototypical Design Tool for Embedded Multi-Core Systems-on-Chip

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Computer Science Integrated Circuits and Systems Lab

Alexander Biedermann and Sorin A. Huss

biedermann@iss.tu-darmstadt.de, huss@iss.tu-darmstadt.de

Challenges

- Today's FPGAs offer plenty of logic resources
- Complex Systems-on-Chip may consist of several dozens of processors and HW IP Cores
- Design tools often still tailored to "single processor with (HW) co-processors" designs
- How to enable smooth, fast, and safe creation of complex Systems-on-Chip?
- How to avoid repetitive, error-prone user inputs?
- How to visualize complex Systems-on-Chip?
- Develop prototypical design tool with usability features which future commercial tool suites should provide soon
- How to support easy design space exploration?
- How to include methodologies that abstract from underlying architectures?

FripGa: Key Features

Idea

Multi Chip Designs

- Scatter designs over multiple FPGAs
- Automatic mapping of modules to FPGAs based on user constraints (max. number of FPGAs, max communication speed, or minimal resource consumption)

File Scene Look & Feel Language Info	
🗋 🔐 🕼 🔗 😰 🝙 🧟 鞲 🔕 🍰 🖉 🖉 🤶 👬 👬	
Abstract Process	Connection Templates

User Interface

- Build HW/SW designs from scratch
- Instantiate, duplicate, connect, and configure embedded processors and IP cores
- TCL scripting engine for all features

File Scene Look & Feel Language Info				

Partial Reconfiguration

- Avoids manual floor planning
- Automatic instantiation of partial reconfigurable regions on FPGA chip area
- Automatic resource analysis to determine sizes of partial reconfigurable regions

File	Scene	Look & Feel	Language	Info						
			2	Q #	o e	p p p	12 5 8 8 5 2 1			
-									Y	

(1)	microblaze_1	microblaze_2	Default Microblaze Elements
Block Ram			Software Projects
/	S" XILINK	ST XILINX:	No software project
ork			muSoftwareProject
	MicroBlaze	MicroSlaze	inysonwarenoject
	- III		
PGA	Software Project: muS	oftwareProject	
XILINX®	Software Project. Higs		
ToUart	Properties	1 /" resample.c "/	Ê
	Processors	3 #include <mvheader.b></mvheader.b>	
	Sources	4 #include <fsl.h></fsl.h>	
in 🚽	src/mySourceFile	5 #include "filter_params.	h" ⊨
	- D Headers	6 #include "file_params.h"	
	src/myHeader.h	7	
AB Controller		8	
٠		10 int resamplePoint(int sa	mpleO, int sample1, int sample2.
icroblaze		11 {	
		12 int resPoint;	
		• 13	
icroblaze Block	2) Scr	14 resPoint = sampleO	* coeffTab[phase][0] + sample1 *
۵.		15	
\$		$\frac{10}{17}$ if (resPoint < 0)	
oC_Process \$		18 resPoint = 0:	
		19	
bus \$		20 if (resPoint > 255)	
.0.		21 resPoint = 255	;
•		22	
econfigurable E 🔻			
A 19.4 4		😋 Add 🛛 🚫 Remove 🔄 🛃 Read	Load file

Handling of Embedded Software Projects

- Import and edit legacy software projects for embedded processors
- Create and edit new software projects
- Easy binding of SW projects to processors

Switching between Software and Hardware Implementations

- Allows for smooth and fast design space exploration
- Guided by a wizard to match interface connections

Editor to integrate Models of Computation (MoC)

- MoC processes may be partitioned to either SW or HW by the designer
- MoC processes may be connected to common modules such as embedded processors or HW IP cores

Additional Features	Comparison of Workflow Efficiency					
 Visual representation, editable at any time 	Xilinx XPS FripGa					
 XML file structure for efficient file handling 	Common operations MC ¹ Time MC ¹ Time					
 Wizard to import legacy IP cores or to create new ones 	Add embedded processor to design47180 s11 s					
- Grouping of modules to functional units to use them as hierarchical design primitives	Establish module-to-module connection 12 28 s 1 1 s					
– Full compatibility to existing commercial tool suites, e.g. Xilinx Platform Studio	Duplicate group of modules n.a. n.a. 2 6 s					
 Built-In IP cores for data path manipulation 	Add partial reconfigurable modules >100 >1800 s 9 25 s					
	1 MC = mouse clicks					

Application Example

- Parallelized FIR filter for image scaling designed in FripGa
- Sub-pixel resampling done either in hardware or in software
- Design with up to 18 soft-core processors created in less than one hour
- Easy switching between different implementations or levels of parallelization

Future Work

- Expand functionality of MoC editor, e.g., by exploiting known MoC transformations from system level to component level
- Exploit virtualization schemes to further abstract from strict software-processor bindings and automatically choose optimal number of processors employed in design (see poster "Scalable Multi-Core Virtualization for Embedded System-on-Chip Architectures" on DATE'12 Friday Workshop: Quo Vadis Virtual Platforms?)

Dipl.-Inform. Alexander Biedermann Technische Universität Darmstadt Integrated Circuits and Systems Lab Hochschulstraße 10 64289 Darmstadt, Germany

Prof. Dr.-Ing. Sorin A. Huss

Technische Universität Darmstadt Integrated Circuits and Systems Lab Hochschulstraße 10 64289 Darmstadt, Germany