
1

Bambu: An Open Source Framework for High Level Synthesis of
Complex Applications

Christian Pilato and Fabrizio Ferrandi
Politecnico di Milano – Dipartimento di Elettronica e Informazione – Italy

{pilato,ferrandi}@elet.polimi.it
http://trac.ws.dei.polimi.it/panda/wiki/Bambu

This paper proposes bambu1, a semi-automatic open-source framework
to assist the designer during HLS, aiming at supporting most of the C
constructs and directly interfacing with commercial tools for the synthesis
to take technology aspects into account. Our framework receives as input
the C description of the specification to be implemented and an XML
configuration file, as shown in Figure 1. As output, it produces the HDL
description of the corresponding hardware implementation and the scripts
for the synthesis with the desired synthesis flow. At the moment, it is
possible to support most of the C constructs, such as:

• function calls and sharing of the corresponding modules;
• pointer arithmetic and dynamic resolution of the memory addresses;
• accesses to arrays/structs and any combination of them;
• variables and structs passed either by reference or copy to the

functions;
• floating point arithmetic (single/double precision) and data types with

different bit-width.

3

Frontend

analysis

(fun1)

Frontend

analysis

(funN)

...

HLS

(fun1)

HLS

(funN)

...

Netlist

Generation

Module

Library

XML

addr's

HDL

description

Call graph + CDFG +

memory info

1

2

4

 wrapping GIMPLE Analysis

Call graph

Memory Allocation

Initial C

code

Resource

Library

Synthesis Script

Generation

5

constraints

passes

config

Testbench

Generation

6

Module

Characterization

Synthesis

Scripts

Interface

Generation

7

B

HLS Optimizations

constraints

Scheduling STG Generation

Resource Binding
Interconnection

Computation

Controller Synthesis Datapath Synthesis

A

Memory

Initialization

Resource

Library

Resource Allocation

C

Script Generation Module EvaluationTool config

Library Evaluation

Fig. 1. Overall structure of the bambu framework and details of the HLS flow.

As front-end, bambu uses a customized interface to GCC ver. 4.5
since it provides the possibility of exporting the internal representation
of the source code after the target-independent optimizations. This allows
to integrate several compiler optimizations into our framework, such as
loop unrolling, constant propagation, dead code elimination that can be
easily enabled/disabled with command-line options or through the input
configuration file. The call graph of the input application is then derived
starting from this syntax tree structure (step 1 in Figure 1).

The resulting call graph is then analyzed to perform specific analysis,
such as the memory allocation (step 2 in Figure 1). In details, this compile-
time analysis determines the data (e.g., scalar variables, arrays, structs)
to be allocated in memories. Then, this information is combined with the
decisions provided by the designer about the physical allocation of the data,
such as, for example, the constraints on the space available for internal
allocation or the physical addresses of the variables which the designer
decides to allocate in the external memories.

1bambu is written in C++ and its source code can be freely downloaded under
GPL license at http://trac.ws.dei.polimi.it/panda/wiki/Bambu.

At this point, bambu generates all the modules necessary to implement
the specification, producing the classic datapath, the controller modules
(based on the FSM paradigm) and the memory interface for each of them
(step 3 in Figure 1). The HLS part is built in a modular way, as shown in
Figure 1, and it can be easily extended with different algorithms for each
of the synthesis steps. We implemented different algorithms for scheduling
and resource binding, as well as optimizations for reducing the number of
multiplexers. The user can decide which algorithms have to be used by
command-line options or by configuring an XML file. As a result, complex
applications (e.g., the CHStone benchmarks – JPEG, ADPCM, GSM)
can be thus generated taking the technology effects into account. In fact,
considering the part C of Figure 1, we adopt specific wrappers to synthesis
tools to characterize the resource library. Then, for each module/function,
it is possible to generate different area/time trade-off by performing a
multi-objective design space exploration [1], [2], taking into account the
interconnection effects and the target device. It is thus possible to adopt
the proper implementation for each of the different functions contained in
the specification. The FloPoCo library is integrated for supporting floating-
point operations.

A novel architecture [3] is then generate (step 4 in Figure 1) to build the
modules and to deal with the different memory interfaces (one for each
of them), avoiding to use three-states for its implementation. In particular,
bambu implements the decisions resulting from the memory allocation as
follows: internal variables are allocated on heterogeneous and distributed
memories, which addresses are determined at compile time. On the other
hand, for the variables allocated on external memories, the methodology
is able to follow the decisions suggested by the designer by providing the
proper addresses to the memory interface and access the data. This archi-
tecture is thus able to dynamically resolve the addresses. Such a memory
interface allows a seamless integration with software tasks, opening new
possibilities for hardware/software co-design for heterogeneous platforms.
Moreover, the possibility of generating a Pareto-set of solutions allows
to deploy high-performance applications onto such systems [4]. For this
reason, there is also the possibility to create different interfaces (step 7 in
Figure 1) to connect the resulting accelerators to software processors (e.g.,
PLB, FSL) and to memory controllers (e.g., Xilinx NPI).

We also integrate a toolflow (step 5 in Figure 1) with different wrappers
to commercial synthesis tools (e.g., Altera Quartus, Xilinx ISE, Synopsys
Design Compiler), based on a common XML configuration schema, to
generate the scripts for targeting the related devices.

Finally, bambu offers the possibility to generate testbenches (step 6 in
Figure 1) starting from the initial C specification and a dataset represented
in XML file. Then, after generating the HDL description and the resulting
testbench, it compares the produced results with the corresponding soft-
ware counterpart to verify the execution. We adopt the GCC regression
test suite for verifying the different aspects of our framework and the
supported constructs. Moreover, we are able to synthesize all the CHStone
benchmarks with different configurations.

REFERENCES

[1] C. Pilato, A. Tumeo, G. Palermo, F. Ferrandi, P. L. Lanzi, and D. Sciuto,
“Improving Evolutionary Exploration to Area-Time Optimization of FPGA
Designs,” Journal of Systems Architecture - Embedded Systems Design, vol. 54,
no. 11, pp. 1046–1057, 2008.

[2] F. Ferrandi, P. L. Lanzi, D. Loiacono, C. Pilato, and D. Sciuto, “A multi-
objective genetic algorithm for design space exploration in high-level synthesis,”
in Proceedings of ISVLSI ’08, 2008, pp. 417–422.

[3] C. Pilato, F. Ferrandi, and D. Sciuto, “A design methodology to implement
memory accesses in high-level synthesis,” in Proceedings of CODES+ISSS ’11,
2011, pp. 49–58.

[4] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Ant Colony
Heuristic for Mapping and Scheduling Task and Communications on Hetero-
geneous Embedded Systems,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 29, no. 6, pp. 911–924, June 2010.

