
DaedalusRT: The System-Level Design Flow for
Hard-Real-Time Embedded MPSoCs Platforms

Mohamed A. Bamakhrama, Jiali Teddy Zhai, Hristo Nikolov, and Todor Stefanov
Leiden Institute of Advanced Computer Science

Leiden University, Leiden, The Netherlands
Email: {mohamed, tzhai, nikolov, stefanov}@liacs.nl

Abstract—DaedalusRT is a system-level design flow for au-
tomated design of real-time embedded multiprocessor system-
on-chip (MPSoC) platforms. It extends the existing Daedalus
design flow with capabilities to support multiple applications and
provide real-time guarantees. DaedalusRT design flow consists of
a set of tools that provide automatic parallelization of sequential
programs, real-time schedulability analysis, and system-level
synthesis.

I. INTRODUCTION

The increasing complexity of embedded streaming appli-
cations (e.g., multimedia, imaging, and signal processing)
imposes new challenges on embedded system designers [1].
Addressing the new challenges increases significantly the
complexity of system design. However, the design time must
remain acceptable, which requires novel systematic, and more-
over, automated design methodologies. In the following we
describe briefly such a methodology realized as the DaedalusRT

design flow.

II. DAEDALUSRT DESIGN FLOW

The DaedalusRT framework considers only dataflow dom-
inated applications (e.g., multimedia, imaging, and signal
processing), in which streams of data are processed by dif-
ferent tasks. It is based on the Daedalus design flow [2]
targeted towards system-level design of MPSoCs. The key
differences between DaedalusRT and Daedalus are the follow-
ing: 1) support for multiple applications. The initial Daedalus
flow supports only a single application, whereas DaedalusRT

flow supports multiple applications, 2) replacing the complex
design space exploration (DSE) with very fast yet accurate
schedulability analysis to determine the minimum number
of processors needed to schedule the applications, and 3)
using hard-real-time multiprocessor scheduling algorithms that
provide temporal isolation to schedule the applications.

DaedalusRT consists of three phases: parallelization, analy-
sis, and system synthesis. The first phase, i.e., parallelization,
accepts as an input a set of independent streaming applications
specified as Static Affine Nested Loop Programs (SANLP)
[3] without cyclic dependencies. Each application is then
parallelized using the pn compiler [3] to produce two mod-
els: an analysis model which is based on the Cyclo-Static
Dataflow (CSDF) model [4], and an implementation model
which is based on the Polyhedral Process Networks (PPN)
model [5]. During the parallelization phase, each application is

analyzed/profiled to determine the worst-case execution time
(WCET) of each task in the application. The output of the
parallelization phase is a set of CSDF graphs and a set of
PPN graphs, where each input application has a corresponding
CSDF and PPN graphs.

The second phase, i.e., analysis, accepts as an input the
set of CSDF graphs produced by the parallelization phase.
Afterwards, it applies the real-time schedulability analysis
proposed in [6] on these graphs to determine the minimum
number of processors needed to schedule the applications. The
output of this phase is platform and mapping specifications.
The platform specifications describe the hardware architecture
which is tiled homogeneous MPSoC with distributed memory.
The mapping specification describes the mapping of tasks to
processors.

The third phase, i.e., system synthesis, accepted as an input
the set of PPN graphs produced by the parallelization phase to-
gether with the platform and mapping specifications produced
by the analysis phase. The system synthesis phase is realized
using the ESPAM tool [7]. Xilinx Platform Studio (XPS)
backed of ESPAM is used to generate an implementation that
can be synthesized on FPGA.

III. CONCLUSION

DaedalusRT is a very fast automated design flow which
enables rapid prototyping of hard-real-time MPSoC systems
running a set of embedded streaming applications.

REFERENCES

[1] L. Karam et al., “Trends in multicore DSP platforms,” IEEE Signal
Processing Magazine, vol. 26, no. 6, pp. 38–49, November 2009.

[2] H. Nikolov et al., “Daedalus: toward composable multimedia MP-SoC
design,” in Proceedings of the 45th DAC, 2008, pp. 574–579.

[3] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: A Tool for Improved
Derivation of Process Networks,” EURASIP Journal on Embedded Sys-
tems, vol. 2007, no. 1, 2007.

[4] G. Bilsen et al., “Cycle-static dataflow,” IEEE Transactions on Signal
Processing, vol. 44, no. 2, pp. 397–408, February 1996.

[5] S. Verdoolaege, “Polyhedral Process Networks,” in Handbook of Signal
Processing Systems, S. Bhattacharyya et al., Eds. Springer US, 2010,
pp. 931–965.

[6] M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications,” in Proceedings of
the 9th EMSOFT, October 2011, pp. 195–204.

[7] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and Automated
Multiprocessor System Design, Programming, and Implementation,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 3, pp. 542–555, March 2008.


