
Applications of the Open Source HW Design Framework zamiaCAD

Anton Chepurov, Valentin Tihhomirov, Syed Saif Abrar, Maksim Jenihhin, Jaan Raik
Tallinn University of Technology, ESTONIA

{ anchep | valentin | saif | maksim | jaan }@ati.ttu.ee

Abstract

zamiaCAD is a modular and extensible open source
framework for advanced hardware design, analysis, and
research. Implemented with high performance, scalability
and usability in mind, zamiaCAD offers in itself an
elaboration core, upon which several different HW related
tasks are performed. An Eclipse plug-in with a built-in
simulator is used as zamiaCAD's graphical front end. The
framework is capable of handling very large industrial
designs, such as a SoC made of 3500 Leon3MP-s.

1. Introduction to zamiaCAD
For powering zamiaCAD [1] applications a custom designed
and highly optimized for scalability and performance HDL
independent object database ZDB is used to accommodate
arbitrarily large designs after they have been fully elaborated
by language dependent front-ends (so far only VHDL). Full
elaboration, resulting in a set of scalable instantiation graph
(IG) data structures, allows clients to perform all kinds of
tasks described below in detail (Fig. 1). The abstract syntax
tree (AST) model serves mainly as an intermediate step in
the IG elaboration process and supports some editor features.
Design database is automatically and efficiently persisted to
disk to save time on later elaboration.

2. Application of zamiaCAD
The open-source zamiaCAD framework addresses mainly
advanced HW RTL design, verification and analysis, and
offers the following functionality:
Code entry features comprise syntax highlight, code entry,
content assist (identifier auto-completion), extensible set of
HDL templates and an incremental IG model builder.
zamiaCAD's HDL code editor is based on Eclipse's editor.
Static analysis (SA) tasks and navigation are feasible due to
the fully elaborated IG design model, where all identifiers
(including types) are resolved. SA tasks include tracing of
parts of signals, precise global tracing, precise matching of
overloaded subprograms, tracing through generate-
statements, advanced signal value annotations (e.g.
annotating only one bit of a vector), computing expressions
on the fly, source-less and sink-less signal detection, FSM
recognition (work-in-progress), code outline and code
hierarchy view, declaration search.
VHDL simulator, implemented in accordance with the IEEE
Standard VHDL Language Reference Manual. Simulator also
provides code coverage measurements, value/timing source
back-annotations and importing of waveform files (VCD).
Debugging features include an experimental algorithm for
automatic design error localization, which brings together SA
and simulator to narrow down the search space where the
design bugs are to be localized.

SystemC generation out of VHDL. While the ultimate goal
here is to explore and define methodologies of abstracting
from RTL to TLM, and generating SystemC TLM model
directly from the VHDL RTL with zero/minimal manual
interaction, currently working prototype is already capable of
generating a cycle-accurate, pin-accurate SystemC model out
of RTL VHDL, thus preserving the level of abstraction.
SystemC TLM generation would enable IP design houses to
provide TLM descriptions of their legacy RTL libraries,
increasingly requested by their customers developing large
modern SoCs.
RTL graphs generation, which provides a designer with a
graphical view of the written code and shows inferred
memory elements (work-in-progress). This obviously
requires partial synthesis and also drives zamiaCAD team
towards creating a fully formalized synthesis algorithm and
its open source implementation within the framework (work-
in-progress).
As a framework, zamiaCAD offers a scripting interface,
implemented in JPython, for controlling external tools, such
as ghdl, ModelSim etc. JPython scripts also make zamiaCAD
itself easier to use from the command line.

References
[1] zamiaCAD webpage: http://zamiacad.sf.net/

Acknowledgements
The authors would like to thank Guenter Bartsch, the main
developer and project founder of zamiaCAD, for the source
code and the help throughout the development and debug,
and IBM Boeblingen, Germany for running tests on the IBM
designs.
The work has been supported in part by Estonian Science
Foundation grant 8478, EU project FP7-2009-IST-4-248613
DIAMOND, EU through European Regional Development
Fund and Estonian Information Technology Foundation
(EITSA).

Static analysis +
Navigation

 - Signal tracing
 - Reference tracing
 - Outlines, trees

Simulation +
Waveform

 - Annotations
 - Code coverage
 - VCD import

Indexer, Parser

AST
Elaboration Engine

IG

ZDB

Figure 1. zamiaCAD structure and applications

Debug

SystemC

Code entry

RTL Graphs

http://zamiacad.sf.net/

