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1 Introduction . 4 ISAC Language1 Introduction .

- Electronic System Level (ESL) design
methodologies use usually one general-

4 ISAC Language

- ISAC is a mixed
language, originally basedmethodologies use usually one general-

purpose core together with specialized
application-specific instruction set (ASIP)
cores that accelerate computation

language, originally based
language

- Allows to create modelscores that accelerate computation

- SoC (System on Chip) or MPSoC (Multi-
Processor SoC) design is expensive and time-

- Allows to create models
accuracy: instruction
instruction set with simplified
cycle-accurate (withProcessor SoC) design is expensive and time-

consuming without specialized tools

- The Lissom project is focused on development

cycle-accurate (with
about microarchitecture

- Instruction set is- The Lissom project is focused on development
of a language ISAC for multi-core processor
description and on a set of tools that
automatically generate tool-chain, simulators

- Instruction set is
operations, where each
syntax, binary coding and

automatically generate tool-chain, simulators
and hardware description that accelerate
MPSoC design

2 Design Space Exploration      

//processor resources like registers and memories
RESOURCES {

REGISTER bit[32] regs;
//…2 Design Space Exploration      //…

}

//general purpose registers description
OPERATION reg REPRESENTS regs {

//register names in format $0 

- Design space exploration (DSE) [1] is a
process of search for optimal architecture for
a specific application

//register names in format $0 
ASSEMBLER { "$" ~ regnum=#U };
//store register number as a 5
CODING { regnum=0bx[5] };
//return register number value 
EXPRESSION { regnum; };

- Automatic toolchain, simulator, and hardware
generation allows fast DSE

EXPRESSION { regnum; };
}

OPERATION opc_add {
ASSEMBLER { "ADD" };
CODING { 0b100000 };
EXPRESSION { OPC_ADD; }; //OPC_ADD is a constant

- Fast DSE saves more time for testing and
verification of the final system

EXPRESSION { OPC_ADD; }; //OPC_ADD is a constant
}
// mnemonics and operation code for 
// is described similarly as the operation code for the ADD 
// instruction

//as opc can be used either opc_add
GROUP opc = opc_add, opc_sub; 

OPERATION instr_arithm {
//used instances of operations and groups//used instances of operations and groups
INSTANCE reg ALIAS {rd, rs, rt }; 

//textual representation
ASSEMBLER { opc rd "," rs "," rt

//binary representation3 Project Lissom //binary representation
CODING { 0b000000 rs rt rd opc };

//instruction's behavior described using C language
BEHAVIOR {

switch ( opc ) {

3 Project Lissom

- The goal of the Lissom project is to provide a
development environment for single- and switch ( opc ) {

case OPC_ADD: regs[rd] = regs
case OPC_SUB: regs[rd] = regs

}
};

}

development environment for single- and
multi-core processor design

- Specialized architecture description language }

Fig. 2: Description of instructions ADD and SUB in 
ISAC language

- Specialized architecture description language
is used to desribe processor architecture and
microarchitecture

ISAC language

- Tools that take ISAC model as input and
automatically generate C language
compiler, assembler, linker, different types ofcompiler, assembler, linker, different types of
simulators and synthesizable hardware
description were implemented 5 Tools for

programming- Graphical user interface based on Eclipse is
provided

programming

- We provide tools for
programming, such
archiver, disassembler
object file format conversions

- C compiler is based
platform, instruction

Processor Model type*

Model source 

lines

Auxiliary C 

code lines

MIPS A 2800 1300 platform, instruction
compiler generation
extracted from the ISAC
MIPS and ADOP

MIPS A 2800 1300
ADOP M 3700 1400
ARMv5 A 1200 1100
PicoBlaze A 630 300

MIPS and ADOP
generated from the extracted

PicoBlaze

Chili II M 2650 960
Chili III A 1790 1170
VEX A 1400 450
8051** M 5000 10008051** M 5000 1000
TI MSP430 A 2000 500
MicroBlaze M 3300 1800

MIPS32 is in version Release 1, with floating-point instructions and Release 1 DSP 
Application Specific Extension instructions, 
ADOP is an experimental processor, also was manufactured with 350nm process
node technology from automatically generated hardware description obtained by 
using Lissom tools, 60
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Fig. 1: Complete processor models described using

using Lissom tools,
Chili II and III are VLIW DSP processors designed by OnDemand Microelectronics
*A – architectural (instruction-accurate), M – microarchitectural (cycle-accurate)
**Model 8051 includes several peripherals 0
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Fig. 1: Complete processor models described using
the ISAC language Fig. 3: Simulation speeds 

simulators of the MIPS 
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Language . 6 Tools for single - and Language .

architecture description
based on the LISA [2]

6 Tools for single - and 
multi-processor system 
simulationbased on the LISA [2]

models on two levels of

simulation
‘

- Several types of simulators, which can bemodels on two levels of
instruction-accurate model (only

simplified behavior) and
(with detailed information

- Several types of simulators, which can be
used in different phases of DSE, are provided

- The basic type is interpreted simulator, further(with detailed information
microarchitecture)

is described using

- The basic type is interpreted simulator, further
we provide three types of compiled simulators
and an RTL (register-transfer level) simulator

is described using
each operation can have its

and behavior described.
- Simulation of multi-core processors, is also

possible, each processor core is represented
as an independent simulatoras an independent simulator

- All types of simulators are based on formal
models ([5], [6])

registers and memories

models ([5], [6])

- Source code profiling on assembly and C-
code levels is available

//general purpose registers description

//register names in format $0 - $31

code levels is available

//register names in format $0 - $31
{ "$" ~ regnum=#U };

//store register number as a 5 -bit binary value 

//return register number value 
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Interpreted 
Simulator
Static Compiled 
Simulator{ OPC_ADD; }; //OPC_ADD is a constant

and operation code for the SUB instruction
similarly as the operation code for the ADD 0
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Simulator

opc_add or opc_sub

//used instances of operations and groups Fig. 4: Multi-core simulation speeds for the interpreted 

Synchronous 

simulation

Asynchronous simulation

//used instances of operations and groups
}; INSTANCE opc;

rt };

Fig. 4: Multi-core simulation speeds for the interpreted 
and compiled simulators

};

//instruction's behavior described using C language

7 Conclusion 'regs [rs] + regs[rt];
regs [rs] - regs[rt];

7 Conclusion '

- Lissom project currently provides

2: Description of instructions ADD and SUB in the 
ISAC language

- Lissom project currently provides
development environment that, from a
compact processor model in ISAC
language, allows to generate automaticallyISAC language
toolchain, simulators with profilers, and
hardware description

- Also a GUI based on Eclipse platform is
provided

- Tool generators were tested multiple on

for processor
- Tool generators were tested multiple on

processor models

- Results of this academic research are used in- Results of this academic research are used in
a commercial tool Codasip® from company
ApS Brno, Codasip Division [7]

for low level processor
as assembler, linker,

disassembler and several tools for
conversions

based on the LLVM
semantics usable for
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