
ASIP Design in the LissomASIP Design in the Lissom
Adam Husár, Zdeněk Přikryl, Karel

{ihusar, iprikryl, masarik, hruska
Brno University of Technology, Faculty of Information Technology, Brno University of Technology, Faculty of Information Technology,

1 Introduction . 4 ISAC Language1 Introduction .

- Electronic System Level (ESL) design
methodologies use usually one general-

4 ISAC Language

- ISAC is a mixed
language, originally basedmethodologies use usually one general-

purpose core together with specialized
application-specific instruction set (ASIP)
cores that accelerate computation

language, originally based
language

- Allows to create modelscores that accelerate computation

- SoC (System on Chip) or MPSoC (Multi-
Processor SoC) design is expensive and time-

- Allows to create models
accuracy: instruction
instruction set with simplified
cycle-accurate (withProcessor SoC) design is expensive and time-

consuming without specialized tools

- The Lissom project is focused on development

cycle-accurate (with
about microarchitecture

- Instruction set is- The Lissom project is focused on development
of a language ISAC for multi-core processor
description and on a set of tools that
automatically generate tool-chain, simulators

- Instruction set is
operations, where each
syntax, binary coding and

automatically generate tool-chain, simulators
and hardware description that accelerate
MPSoC design

2 Design Space Exploration

//processor resources like registers and memories
RESOURCES {

REGISTER bit[32] regs;
//…2 Design Space Exploration //…

}

//general purpose registers description
OPERATION reg REPRESENTS regs {

//register names in format $0

- Design space exploration (DSE) [1] is a
process of search for optimal architecture for
a specific application

//register names in format $0
ASSEMBLER { "$" ~ regnum=#U };
//store register number as a 5
CODING { regnum=0bx[5] };
//return register number value
EXPRESSION { regnum; };

- Automatic toolchain, simulator, and hardware
generation allows fast DSE

EXPRESSION { regnum; };
}

OPERATION opc_add {
ASSEMBLER { "ADD" };
CODING { 0b100000 };
EXPRESSION { OPC_ADD; }; //OPC_ADD is a constant

- Fast DSE saves more time for testing and
verification of the final system

EXPRESSION { OPC_ADD; }; //OPC_ADD is a constant
}
// mnemonics and operation code for
// is described similarly as the operation code for the ADD
// instruction

//as opc can be used either opc_add
GROUP opc = opc_add, opc_sub;

OPERATION instr_arithm {
//used instances of operations and groups//used instances of operations and groups
INSTANCE reg ALIAS {rd, rs, rt };

//textual representation
ASSEMBLER { opc rd "," rs "," rt

//binary representation3 Project Lissom //binary representation
CODING { 0b000000 rs rt rd opc };

//instruction's behavior described using C language
BEHAVIOR {

switch (opc) {

3 Project Lissom

- The goal of the Lissom project is to provide a
development environment for single- and switch (opc) {

case OPC_ADD: regs[rd] = regs
case OPC_SUB: regs[rd] = regs

}
};

}

development environment for single- and
multi-core processor design

- Specialized architecture description language }

Fig. 2: Description of instructions ADD and SUB in
ISAC language

- Specialized architecture description language
is used to desribe processor architecture and
microarchitecture

ISAC language

- Tools that take ISAC model as input and
automatically generate C language
compiler, assembler, linker, different types ofcompiler, assembler, linker, different types of
simulators and synthesizable hardware
description were implemented 5 Tools for

programming- Graphical user interface based on Eclipse is
provided

programming

- We provide tools for
programming, such
archiver, disassembler
object file format conversions

- C compiler is based
platform, instruction

Processor Model type*

Model source

lines

Auxiliary C

code lines

MIPS A 2800 1300 platform, instruction
compiler generation
extracted from the ISAC
MIPS and ADOP

MIPS A 2800 1300
ADOP M 3700 1400
ARMv5 A 1200 1100
PicoBlaze A 630 300

MIPS and ADOP
generated from the extracted

PicoBlaze

Chili II M 2650 960
Chili III A 1790 1170
VEX A 1400 450
8051** M 5000 10008051** M 5000 1000
TI MSP430 A 2000 500
MicroBlaze M 3300 1800

MIPS32 is in version Release 1, with floating-point instructions and Release 1 DSP
Application Specific Extension instructions,
ADOP is an experimental processor, also was manufactured with 350nm process
node technology from automatically generated hardware description obtained by
using Lissom tools, 60

80
100
120

M
IP

S

Interpreted simulator, MIPS

Fig. 1: Complete processor models described using

using Lissom tools,
Chili II and III are VLIW DSP processors designed by OnDemand Microelectronics
*A – architectural (instruction-accurate), M – microarchitectural (cycle-accurate)
**Model 8051 includes several peripherals 0

20
40
60

bit count crc32 dijkstra

M
IP

S

Fig. 1: Complete processor models described using
the ISAC language Fig. 3: Simulation speeds

simulators of the MIPS

bit count crc32 dijkstra

Lissom ProjectLissom Project
Karel Masařík, Tomáš Hruška
hruska}@fit.vutbr.cz,

of Information Technology, CZof Information Technology, CZ

Language . 6 Tools for single - and Language .

architecture description
based on the LISA [2]

6 Tools for single - and
multi-processor system
simulationbased on the LISA [2]

models on two levels of

simulation
‘

- Several types of simulators, which can bemodels on two levels of
instruction-accurate model (only

simplified behavior) and
(with detailed information

- Several types of simulators, which can be
used in different phases of DSE, are provided

- The basic type is interpreted simulator, further(with detailed information
microarchitecture)

is described using

- The basic type is interpreted simulator, further
we provide three types of compiled simulators
and an RTL (register-transfer level) simulator

is described using
each operation can have its

and behavior described.
- Simulation of multi-core processors, is also

possible, each processor core is represented
as an independent simulatoras an independent simulator

- All types of simulators are based on formal
models ([5], [6])

registers and memories

models ([5], [6])

- Source code profiling on assembly and C-
code levels is available

//general purpose registers description

//register names in format $0 - $31

code levels is available

//register names in format $0 - $31
{ "$" ~ regnum=#U };

//store register number as a 5 -bit binary value

//return register number value

60

70

{ OPC_ADD; }; //OPC_ADD is a constant

30

40

50

60

P
er

fo
rm

an
ce

 [M
IP

S
]

Interpreted
Simulator
Static Compiled
Simulator{ OPC_ADD; }; //OPC_ADD is a constant

and operation code for the SUB instruction
similarly as the operation code for the ADD 0

10

20

MIPS ARM5 VEX I VEX IIP
er

fo
rm

an
ce

 [M
IP

S
]

Simulator

opc_add or opc_sub

//used instances of operations and groups Fig. 4: Multi-core simulation speeds for the interpreted

Synchronous

simulation

Asynchronous simulation

//used instances of operations and groups
}; INSTANCE opc;

rt };

Fig. 4: Multi-core simulation speeds for the interpreted
and compiled simulators

};

//instruction's behavior described using C language

7 Conclusion 'regs [rs] + regs[rt];
regs [rs] - regs[rt];

7 Conclusion '

- Lissom project currently provides

2: Description of instructions ADD and SUB in the
ISAC language

- Lissom project currently provides
development environment that, from a
compact processor model in ISAC
language, allows to generate automaticallyISAC language
toolchain, simulators with profilers, and
hardware description

- Also a GUI based on Eclipse platform is
provided

- Tool generators were tested multiple on

for processor
- Tool generators were tested multiple on

processor models

- Results of this academic research are used in- Results of this academic research are used in
a commercial tool Codasip® from company
ApS Brno, Codasip Division [7]

for low level processor
as assembler, linker,

disassembler and several tools for
conversions

based on the LLVM
semantics usable for

8 Acknowledgements '

semantics usable for
can be automatically

ISAC model, compilers for
ADOP architectures were 8 Acknowledgements '

This research was supported by the doctoral grant GA CR 102/09/H042, by the grants
of MPO Czech Republic FR-TI1/038, by the grant FIT-S-10-2, by the research plan no.
MSM0021630528 and by the European project SMECY.

ADOP architectures were
extracted information [3]

. MSM0021630528 and by the European project SMECY.

9 References

.

[1] Bailey, B., et al.: ESL Design and Verification: A Prescription for Electronic System
Level Methodology, Morgan Kauffman Publishers, 2007.

[2] Hoffmann, A., Meyr, H., Leupers, R., Architecture Exploration for Embedded
Processors with LISA, Kluwer Academic Publishers, 2002.

[3] Husár, A., et al.: Automatic C Compiler Generation from Architecture Description

Interpreted simulator, VEX

[3] Husár, A., et al.: Automatic C Compiler Generation from Architecture Description
Language ISAC. In: 6th Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science, Brno, CZ, 2010.

[4] MiBench Version 1.0. Available on: http://www.eecs.umich.edu/mibench/.
[5] Hruška, T., Kolář, D., Lukáš, R., Zámečníková, E.: “Two-Way Coupled Finite

Automaton and Its Usage in Translators”, New Aspects of Circuit dijkstra quicksort sha WSEAS, Athens, GR, 2008.
[6] Přikryl, Z., Masařík, K., Hruška, T., Husár, A.: “Fast Cycle-Accurate Interpreted

Simulation”, In Tenth International Workshop on Microprocessor Test and
Verification: Common Challenges and Solutions, Austin, US, 2009.

[7] Codasip, Available on: www.codasip.com

speeds of the provided types of
MIPS and VEX architectures

dijkstra quicksort sha

