
Functional Hardware Design in CλaSH

Christiaan Baaij, Rinse Wester, Anja Niedermeier, Arjan Boeijink, Marco
Gerards, Jan Kuper, Gerard Smit - Compute Architectures for Embedded
Systems group, University of Twente, Enschede, The Netherlands

CλaSH [1, 3] is a compiler system for generating hardware as described by
a mathematical/functional specification of the architecture. The specification
language is a subset of the functional programming language Haskell and offers:

Polymorphism: a hardware component that is useful for different types of
data has to be specified only once.

Higher-order functions: regular structures can be expressed very concisely
and are well readable.

Lambda abstraction: purely combinational circuits can be expressed in-line.

Pattern matching: definition-by-cases has a compact format and is well
readable.

Functional composition: composition of components exploits signals di-
rectly without being bothered by port mappings.

Type derivation: types of input and output signals of nested components
can be derived automatically from the types of the outer component.

Functional languages are especially well suited to describe hardware because
combinational circuits can be directly modeled as mathematical functions and
functional languages are very capable of describing and (de-)composing these
functions.

The CλaSH system uses a rewrite mechanism that exhaustively applies
meaning-preserving transformations on the specification to generate RTL-style
VHDL. Several cases have shown that the generated designs have similar size
and operating frequency as designs hand-written in RTL-style VHDL. We will
demonstrate these designs, a reduction circuit for Sparse Matrix Vector multipli-
cation (SMxV) [1, 2] and a Data-flow processor [4], including their corresponding
quality parameters such as size, energy usage, and operating frequency.

To show that CλaSH is well-suited to specify a mixture of data- and control-
oriented hardware we will also demonstrate a music synthesizer and a spectrum
analyzer. The designs are synthesized for an Altera Cyclone II FPGA develop-
ment board, and interface with several of the peripherals on this board such as
an audio CODEC and a VGA controller. The design of this system also demon-
strates the use of multiple clock domains in a CλaSH architecture specification.

http://clash.ewi.utwente.nl/



References

[1] C.P.R. Baaij, M. Kooijman, J. Kuper, W.A. Boeijink, M.E.T. Gerards,
CλaSH: Structural Descriptions of Synchronous Hardware using Haskell. In:
Proceedings of the 13th EUROMICRO Conference on Digital System Design:
Architectures, Methods and Tools (DSD 2010), Lille, France, 1-3 Sep 2010,
pp. 714–721.

[2] M.E.T. Gerards, J. Kuper, A.B.J. Kokkeler, E. Molenkamp, Streaming Re-
duction Circuit, In: Proceedings of the 12th EUROMICRO Conference on
Digital System Design, Architectures, Methods and Tools (DSD 2009), Pa-
tras, Greece, 2009, pp. 287–292

[3] J. Kuper, C.P.R. Baaij, M. Kooijman, M.E.T. Gerards, Exercises in archi-
tecture specification using CλaSH, In: Proceedings of Forum on Specification
and Design Languages (FDL 2010), Southampton, UK, pp. 178–183.

[4] A. Niedermeier, R. Wester, C.P.R. Baaij, J. Kuper, G.J.M. Smit, Comparing
CλaSH and VHDL by implementing a dataflow processor. In: Proceedings
of the Workshop on PROGram for Research on Embedded Systems and Soft-
ware (PROGRESS 2010), Veldhoven, The Netherlands, pp. 216–221.

Example: FIR Filter

module FIR where

import CLasH.HardwareTypes

-- Polymorphic Dot-product defined using higher-order functions

-- Works for all vector lenghts and all number types

dotp as bs = vfoldl (+) 0 (vzipWith (*) as bs)

-- N-tap polymorphic FIR Filter:

-- hs : Filter coefficients

-- pxs: previous inputs (registers)

-- x : current input

fir hs (State pxs) x = (State (x +>> pxs), dotp pxs hs)

-- 4-tap, 16-bit signed integer, FIR Filter:

-- coefficients: <2,3,-2,8>

-- registers initialized to 0

fir4 = (fir coeffs) ^^^ initR

where

coeffs = $(vTH [2,3,-2,(8::Signed D16)])

initR = vcopyn d4 0


