
HDL-based Test Evaluation Tool Set

M. Namaki-Shoushtari, N. Nemati, P. Kabiri, A. Lotfi, Z. Navabi

Electrical and Computer Engineering Department

School of Engineering Colleges-Campus#2- University of Tehran, 1450 North Amirabad, 14395-515 Tehran, Iran

{mnamaki, nastaran, pani, atieh, navabi}@cad.ece.ut.ac.ir

Abstract— This demonstration provides a test tool set that is
based on PLI and VPI interfaces of the Verilog HDL. The tool set
includes code coverage analysis, and utilities for evaluation of test
and testability methods. The test components provide
mechanisms for fault injection, fault simulation, test generation,
DFT and BIST evaluation, and test point insertion. A dynamic
power estimation tool has also been included in the package for
measuring test power. Our tool set includes a netlist generation
program that converts EDIF-2 format to proper format for our
HDL-based test analysis.

I. INTRODUCTION

Contentious scaling of the feature size of CMOS
technology has resulted in exponential growth in transistor
densities, which helps designers to put more functionality on a
die. On the other hand, has two unintended manufacturing test
related consequences are the increase in test time and the
elevated power in test mode. Due to necessity of short time to
market, it is desirable to consider testing at the early phases of
a design. To cope with this, designers need to have a test
framework, compatible with their language. This test
framework gives designers some test-related feedbacks and
based on these feedbacks they can decide on design and test
modifications in the first stages of design. These early
modifications reduce time to market.

Furthermore, using the same environment for design and
test, all components in a large design can be tested
independent of others. In a mixed level design, these
advantages make it possible to test a single component
described at the gate level, while leaving other components in
RTL or even at the system level.

Dynamic power consumption is the dominant part of the
test power. We need to estimate the dynamic power
consumption during test mode in order to evaluate our test
strategy.

In this work, a test tool set has been proposed that takes
advantage of PLI and VPI interfaces of Verilog HDL. This
tool set can be employed to evaluate DFT insertions and to
estimate power consumption of different test methods at
during design phase. The interface and Verilog testbench
capabilities provide a designer friendly work environment.

II. HDL-BASED TEST PACKAGE

The HDL-based test package includes a netlist generator, PLI
test utilities, power estimator and various forms of test
applications that are listed here.

A. Netlist Generators

Our netlist generator uses the intermediate EDIF-2 format
for generating Verilog gate level netlists in a format that is
appropriate for our test package utilities.

B. PLI Test Utilities

A number of PLI utilities useful for developing test
applications are provided in our test package. These utilities
include:

 Fault Injection
 Fault Collapsing (Line-oriented)
 Signal Activity Estimator (useful to do statistical

fault simulation)
 Module Enabler-Disabler (useful for hierarchical

fault simulation)
 Gate-level Walkers
 Controllability and Observability Measurements

(SCOAP and Probability-based)

C. Power Estimator

We back annotate dynamic power of 2-input gates from
transistor level into our generic gate library that has n-input
logic gates. Each gate of the design measures its contribution
to power and then a PLI function is called at the end to
calculate the total test power.

D. Test Applications

 Serial Fault Simulation
 Parallel Fault Simulation
 Hierarchical Fault Simulation
 Pseudo Random Test Generation
 Test Data Compaction
 BIST Evaluation
 DFT Evaluation (Virtual Tester)
 Low-power Test Generation
 Test Point Insertion
Figure 1 shows the general form of implementing and

running test programs in such a mixed environment.

E. Code Coverage Analyzer

Figure 1 Implementing and running test applications in test environment

