
YARDstick: Automation tool for custom processor development

Nikolaos Kavvadias and Spiridon Nikolaidis

nkavv@physics.auth.gr

Electronics and Computers Lab – Dept. of Physics – Aristotle University of Thessaloniki – Greece

http://electronics.physics.auth.gr/

Abstract

YARDstick is a building block for ASIP development,
integrating application analysis, custom instruction
generation, selection and synthesis with user-defined
compiler intermediate representations.

1. Motivation

ASIPs (Application Specific Instruction-set Processors)
play a central role in modern embedded SoCs replacing
hardwired solutions which offer no programmability for
enabling reuse or encompassing late specification changes.
ASIPs are tuned for cost-effective execution of targeted
application sets. An ASIP design flow involves profiling,
architecture exploration, generation/selection of instruction-
set extensions (ISEs) and synthesis of the corresponding
hardware while enabling the user taking certain decisions.
It is often in ASIP design that certain practical issues
arising from seemingly invariant elements of the design
flow are not addressed:
a) Assumptions of the IR (intermediate representation) to

which the application code is mapped directly affect
solution quality as in the case of ISE synthesis.

b) The exploration infrastructure tied up to the
conventions of software development tools.

c) Adaptability to different compilers/simulators.
d) Support for low-level entry for application migration

within a processor family and reverse engineering.
YARDstick integrates custom instruction generation,
selection and synthesis techniques with a flexible IR
infrastructure that can reflect certain designer decisions that
is cumbersome to apply otherwise. For example using an IR
with intrinsic support for partial predication and bit-level
operations may yield significantly different ISEs to the case
of an unaugmented IR. YARDstick provides profiling
facilities for determining static and dynamic application
metrics such as data types, memory hierarchy statistics, and
execution frequencies. Application entry can be either high-
level (e.g. ANSI C) or low-level (assembly code). A
number of recent ISE identification and selection
techniques have been implemented while hardware
estimators (speedup, area) and bindings to hardware
synthesis from CDFGs are provided.

2. YARDstick details and usage

The main role of YARDstick is to facilitate design space
exploration (DSE) in heterogeneous flows for ASIP design

where the development tools (compiler, binary utilities,
simulator/ debugger) in many cases, lack DSE capabilities
and/or have been designed with different interfaces in mind.
Thus, it is often that significant development effort is
required in adding features as afterthoughts and dealing
with interoperability issues, especially at the compiler and
simulator boundaries.
To overcome these problems, YARDstick employs the
ByoX (Bring Your Own Compiler and Simulator) kernel
providing:
• An IR specification format called BXIR covering

primitive operation syntax, semantics and other
quantifiers (as latency and area of hardware
implementations for IR operators).

• A simple file interface for a flat CDFG (with/without
SSA) format of application IR called ISeq. The results
of compiler analyses (e.g. register liveness, natural
loops) can be passed to ByoX as defined by their
corresponding BNFs.

• An IR manipulation API for writing external analyses
and optimizations.

In ISeq, the following application information is recorded:
• The global symbol table
• The procedure list, consisting of data dependence

entries and a statement list per procedure. Different
facets of the local symbol table (e.g. single-per-
direction vs. multiple variable definition points) can be
generated.

At the simulation boundary, YARDstick expects
information on the dynamic profile of the application (basic
block execution frequencies, program trace, cache memory
access statistics) on a target machine. From within
YARDstick, static and dynamic application metrics can be
evaluated and visualized.
Further, a number of instruction generation/selection
methods have been implemented for the ByoX API.
Instruction generation involves the identification of MIMO
(Multiple-Input Multiple-Output) ISeq patterns that may
span across basic block (BB) boundaries, under user-
defined constraints. When invoked, a custom instruction
library is constructed from the ISeq patterns, which can be
filtered during the process for removing redundant cases. A
subset of the library can be selected by using either a greedy
selector (with configurable priority metric) or a 0-1
knapsack-based one. Since custom instructions can be
expressed in ISeq, pattern libraries can be imported to
YARDstick.
Application CFGs, BBs and patterns can be processed by a
number of backends for exporting to:
• ANSI C subset code for incorporation to user tools

(simulators, validators etc).

* This work was supported by the General Secretariat of Research and Technology of Greece and the European Union.

mailto:nkavv@physics.auth.gr
http://electronics.physics.auth.gr/

• GDL (VCG) and dot (Graphviz) files for visualization.
• An extended CDFG [1] format for scheduling and

translation to synthesizable VHDL (BBs and patterns).
• GGX XML [2] files for algebraic graph transformation.
Assembly-level code generated by GCC [3] and COINS [4]
can be imported, assuming a working SALTO [5] backend
and the associated set of SALTO passes for the translation.

3. Case studies

For proof-of-concept, we have evaluated YARDstick with
the specification of the unmodified SUIFvm IR [6] and a set
of incremental extensions to it (summarized in Table 1) as
well as DLX assembly viewed as a form of machine-level
IR.

Table 1: Different IR settings for ISE generation
IR Operations
SUIFvm The operation set defined in [6]
Extended
SUIFvm
(partial
list)

type conversion (sxt, zxt), partial
predication (select), operations-by-
constant (mulc, lslc, asrc, lsrc), bit
manipulation (bitinsert, bitextract, concat)

iDLX The DLX integer instruction set

Preliminary test results regard analysis and exploration of
embedded processing kernels such as motion estimation/
compensation, DSP transforms, rc5, aes, raiden and
applications as adpcm, crc, and jpeg. Fig. 2 illustrates
backend generated sample files, more specifically an
expanded CFG view for raiden (2a), and a pattern (2b)
identified in a BB of Fig. 2a.

4. Environment

YARDstick has been used along with the SUIF/Machine-
SUIF [6], GCC [3], and COINS [4] compilers and
(currently) the ArchC [7] simulation framework.
YARDstick functionality is accessible through a cross-
platform GUI compatible to recent Tcl/Tk versions (8.4.x).
A screenshot of the GUI can be seen in Fig. 1.
Supported platforms include GNU/Linux (RedHat 9.0),
Cygwin and Win32 (Windows/XP SP2) on x86-compatible
processors.

4. Future work and conclusion

Planned additions to YARDstick include support for PDG
(program dependence graph) IRs, automatic translation
between BXIR and SALTO/compiler backends, and
interprocedural analyses and optimizations.
Overall, YARDstick aims in enabling more options for the
ASIP designer by allowing crucial parts of development
frameworks to be independent of compiler and simulator
idiosyncrasies.

5. References

[1] CDFG toolset. http://poppy.snu.ac.kr/CDFG/cdfg.html
[2] The AGG homepage. http://tfs.cs.tu-berlin.de/agg/
[3] GCC. http://www.gcc.org
[4] The COINS project. http://www.coins-project.org
[5] SALTO. http://www.irisa.fr/caps/projects/Salto/
[6] Machine-SUIF.
http://www.eecs.harvard.edu/hube/research/machsuif.html
[7] The ArchC resource center. http://www.archc.org

 Figure 1: Screenshot of the YARDstick configuration GUI

(a) The expanded raiden CFG (b) A pattern from (a)

Figure 2: Sample backend generated files.

http://poppy.snu.ac.kr/CDFG/cdfg.html
http://tfs.cs.tu-berlin.de/agg/
http://www.gcc.org/
http://www.coins-project.org/
http://www.irisa.fr/caps/projects/Salto/
http://www.eecs.harvard.edu/hube/research/machsuif.html
http://www.archc.org/

