
SystemCoDesigner – The System-Level Hardware-Software-Co-Design Tool

J. Falk, J. Gladigau, M. Glaß, C. Haubelt, S. Helwig, J. Keinert, M. Lukasiewycz,
T. Schlichter, T. Streichert, M. Streubühr, and J. Teich

codesigner@mycodesign.com

Hardware-Software-Co-Design - University of Erlangen-Nuremberg – Germany

http://www.mycodesign.com/research/scd

Abstract

SystemCoDesigner is a software tool for automatic design
space exploration at the electronic system level and auto-
matic platform-based prototyping of hardware/software
systems using SystemC.

1. Introduction

80% of all design decisions are taken in the first 20% of the
design time. Thus, a substantiated knowledge about possi-
ble solutions is mandatory to design high quality systems.
SystemCoDesigner is a software tool for automatic design
space exploration at the electronic system level and plat-
form-based prototyping of hardware/software systems. By
exploring the design space, a designer becomes more confi-
dent in decisions to be done. Many software tools exist at
the electronic system level, but to the best of our knowledge
none of them covers all aspects from specification over
automatic exploration to automatic prototype implementa-
tion (cf. [4]). In the following, we will briefly describe the
SystemCoDesigner design flow itself and the SystemC1
input to this design flow.

2. SystemCoDesigner Design Flow

SystemCoDesigner is a software tool for automatic design
space exploration at the electronic system level and hard-
ware/software prototyping. The input is a functional model
written in SystemC. During exploration, the goal is to opti-
mally allocate resources and bind the SystemC modules
onto these allocated resources. After decision making a
prototype implementation of the resulting hard-
ware/software system can be generated. The proposed
design flow is shown in Figure 1.
As a first step, the designer has to write an executable
model of the behavior of the application using SystemC.
For automatic prototype implementation and simulation-
based estimation during exploration it is necessary that the
application is specified using the SysteMoC library (see
Section 3). In a third and fourth step, the designer has to
specify the architecture template and all possible mappings
of SystemC functions onto the resources in the architecture
template. Again, the prototype implementation demands the
usage of predefined hardware resources (CPUs, busses, IP
cores, etc.). Hardware accelerators can either be written

1 SystemC is a trademark of the Open SystemC Initiative

manually by transforming SysteMoC modules or can also
be synthesized automatically (Step 2).

Figure 1: SystemCoDesigner design flow from SystemC to
an FPGA-based hardware/software system.

Using this input information, the Design Space Exploration
(DSE) can be performed automatically [1,3]. For this pur-
pose, SystemCoDesigner uses state-of-the-art multi-
objective optimization algorithms. However, finding good
solutions from scratch is like looking for a needle in a
haystack. To improve performance, symbolic techniques
have been integrated into SystemCoDesigner [5,6].
SystemCoDesigner supports the evaluation of designs
during exploration using SystemC simulation. Automati-
cally generated system level performance models permit a
fast estimation of latency and throughput numbers by a
combined behavioral and timing simulation considering
allocation and binding effects [7]. For this purpose, the
allocated architecture is modeled in SystemC at a high level
of abstraction. This allows for exploring effects from het-

1) Write SystemC application

2) Generate hardware components

3) Specify architecture template

4) Specify additional mapping constraints

5) Perform automatic DSE

6) Select implementation

7) Automatic system generation

CPUCPU MEMMEM

MEMMEM

BUSBUS
CPUCPU

HWHW HWHW

erogeneous multi-processor architectures, scheduling pol-
icy, and resource contention.
After selecting an implementation (Step 6), the System can
be automatically implemented (Step 7). As a proof of con-
cept, the mapping onto Xilinx FPGAs using Xilinx Micro-
Blaze2 softcore processors and manually designed hardware
components has been shown in [3].
SystemCoDesigner provides a graphical user interface,
including a front end for specification of the architecture
template and mapping possibilities as well as a visualization
of the design space exploration and optimal implementa-
tions (see Figure 2). Using the GUI, the designer can further
perform decision making by selecting a solution for proto-
type implementation. Moreover, the system level perform-
ance model used throughout the exploration can be gener-
ated and simulated using SystemC. The visualization of
simulation traces is supported through automatic waveform
generation. These waveforms are an additional support in
design verification.

Figure 2: SystemCoDesigner GUI allows to control design
space exploration parameters as well as the visualization of

exploration results and simulation traces.

3. Automatic Platform-Based Hard-
ware/Software Prototyping

In order to use the automatic hardware/software prototyping
features, a synthesizable subset of SystemC must be used as
input to SystemCoDesigner. Beside the synthesizable subset
of a C-based behavioral synthesis tool, the designer has to
specify the application using the SysteMoC library [2].
SysteMoC is a SystemC-based library. In addition to the
actor-oriented concepts of SystemC requiring that commu-
nication between modules is only performed using channels
connected to the port of a module, SysteMoC distinguishes
between the communication behavior and the actions per-
formed by a SystemC module. This is done by specifying a
so called firing FSM. The firing FSM models the externally
visible states of an actor as well as state transitions and
corresponding activation conditions.
The execution model of a SysteMoC design is as follows:
Firstly, for each actor it is tested whether a state transition

2 MicroBlaze is a trademark of Xilinx, Inc

exists with a fulfilled activation condition leaving the cur-
rent state. Secondly, for each actor with at least one acti-
vated state transition, one of them is chosen non-
deterministically. Finally, all channels in the system are
updated. This execution model omits unnecessary event
updates inside the SystemC simulation kernel and, thus,
improves the simulation speed. For more details see [2].
SystemCoDesigner supports automatic software synthesis
from SysteMoC descriptions and hardware/software system
generation for Xilinx FPGAs using Xilinx MicroBlaze
softcore processors. Hardware synthesis requires behavioral
synthesis tools such as Cynthesizer3 by Forte Design Sys-
tems or Catapult4 by Mentor Graphics.

4. Conclusion

SystemCoDesigner is a powerful tool for increasing the
confidence in early design decision through an automatic
design space exploration at the electronic system level and
automatic FPGA-based hardware/software prototyping. To
the best of our knowledge SystemCoDesigner is the first
tool available for automatically going from SystemC behav-
ioral descriptions to hardware/software implementations
including automatic optimization.

5. References

[1] T. Blickle, J. Teich, and L. Thiele. System-Level Syn-
thesis Using Evolutionary Algorithms. Journal on Design
Automation for Embedded Systems, 3(1), pp. 23-58, 1998.
[2] J. Falk, C. Haubelt, and J. Teich. Efficient Representa-
tion and Simulation of Model-Based Designs in SystemC.
In Proceedings FDL'06, Forum on Design Languages, pp.
129 - 134, 2006.
[3] C. Haubelt. Automatic Model-Based Design Space
Exploration for Embedded Systems - A System Level Ap-
proach. Ph.D. Thesis, University of Erlangen-Nuremberg,
2006
[4] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M.
Streubühr, A. Deyhle, A. Hadert, and J. Teich. A SystemC-
based Design Methodology for Digital Signal Processing
Systems. In EURASIP Journal on Embedded Systems,
Special Issue on Embedded Digital Signal Processing Sys-
tems, 2007.
[5] C. Haubelt, T. Schlichter, and J. Teich. Improving
Automatic Design Space Exploration by Integrating Sym-
bolic Techniques into Multi-Objective Evolutionary Algo-
rithms. In International Journal of Computational Intelli-
gence Research (IJCIR), Special Issue on Multiobjective
Optimization and Applications, 2(3). pp. 239-254, 2006.
[6] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich.
Symbolic Archive Representation for a Fast Nondominance
Test. In Proceedings of the Fourth International Conference
on Evolutionary Multi-Criterion Optimization, 2007.
[7] M. Streubühr, J. Falk, C. Haubelt, J. Teich, R. Dorsch,
and T. Schlipf. Task-Accurate Performance Modeling in
SystemC for Real-Time Multi-Processor Architectures. In
Proceedings of Design, Automation and Test in Europe, pp.
480-481, 2006.

3 Cynthesizer is a trademark of Forte Design Systems
4 Catapult is a trademark of Mentor Graphics Corporation

