
SoC Architecture Explorer

Imai Laboratory, Osaka University, Japan
http://vlsilab.ics.es.osaka-u.ac.jp/

Abstract

SoC Architecture Explorer is an architecture exploration tool
for SoC design. It explores all possible parameter sets under
constraints and estimates design quality of every architecture
candidates.

1. Introduction

In recent years, the requirement for multi-functionality and

complexity of embedded systems increase design cost.
Consequently, IP-based design methodology that aims to
reduce the design time by reusing predesigned functional
blocks, called IP (Intellectual Property), has been focused.
To find out optimal architecture that satisfies design

constraints of hardware area and execution time, designers
should evaluate the design quality of architectures consisting
of different functional blocks and different bus architectures.
Therefore, fast architecture evaluation method for various
architectures and efficient architecture exploration method are
required.
SoC Architecture Explorer automatically investigates the

design space and reports a number of candidates, which have
a trade-off relation between performance and hardware area.
SoC Architecture Explorer provides tools for (1) modeling the
target system at system-level, (2) specifying architecture
constraints, (3) exploring architectures, and (4) checking
design quality of a number of candidates.

2. Exploration Mechanism

Inputs to SoC Architecture Explorer are a system–level

model of the target system, specification of each IP, range of
parameters (bus execution frequency, bus bit width, and the
number of buffers), and the constraints of hardware area and
the execution time. Outputs are candidates of architecture-
level models that are in trade-off relation between hardware
area and execution time.
Figure 1 shows the architecture exploration flow of SoC

Architecture Explorer. Designers should design system-level
model of the target system and specify architecture
constraints such as hardware area with partially defined
process and channel mappings. Then, described system-level
model is profiled. By this profiling, dependency and data flow
between processes are recognized. Next, in the pre-scheduling
step, a graph representing execution order among data
processing and transfers (We call System-Level Execution
Order Graph: SL-EOG) is constructed from system-level
profile.
In the exploration phase, architecture-level model is

constructed. Architecture-level model is comprised of
functional blocks, such as processors and ASICs, performing

data processing, buses conducting data transfers, and buffers
storing data for transfer. Then, in post-scheduling step,
Architecture Level Execution Dependency Graph (AL-EDG),
which represents execution dependency among data
processing and transfers, and process and channel mapping is
constructed from architecture-level model and SL-EOG.
Finally, execution time is estimated, using generated AL-
EDG.

Estimation is performed for each candidate of architecture-
level model. All candidates are expressed in parameter set
search tree, and exploration is performed by tracing parameter
set search tree. However, large system leads the number of
architecture candidates to exponential increase. Therefore,
exhaustive trace of parameter set search tree wastes enormous
time. In our method, candidates are dramatically reduced by
branch and bound, based on architecture constraints such as
the constraints of hardware area and execution time, and
partially defined process, channel mappings, and parameters.

3. Design Flow in the Tool

The design flow with our tool is as follows:
(1) Model the target system in system-level model.
(2) Set constraints on hardware area and application

execution time.
(3) Set architecture parameter candidates of bus execution

frequencies, bus bit widths, and the number of data
blocks in buffer.

Architecture candidates

Data flow analysis

SL-EOG

Estimated
result

Design
constraints

IP-DB

Fig.1: Architecture Exploration Flow.

Profiling Phase

Post-
scheduling

Architecture-level

System-level model

Exploration Phase

AL-EDG

Execution time
estimation

Architecture exploration

Profile info.

Pre-scheduling

(4) Set partially defined process and channel mappings.
(5) Run architecture exploration tool. The tool explores all

possible parameter sets and outputs the number of
architectures, which have a trade-off relation between
performance and hardware area. Design space is
reduced by branch and bound, based on architecture
constraints such as the constraints of hardware area
and execution time, and partially defined process,
channel mappings, and parameters.

(6) Check design quality of architecture candidates, which
the exploration tool outputs. Designers can check each
visualized candidate and its data transfer to decide an
optimal architecture.

Fig.2: Tool Overview.

4. Experiment

To confirm the effectiveness of our tool, we explored

optimal architecture of audio/video encoding system which
consists of ten processes and nine channels by both
exhaustive search and the proposed method. Following
constraints have been imposed on target system: bus bit
width is 16 bit or 32 bit, bus execution frequency is 1MHz
or 2MHz, and the number of buffers is one or two. However,
no constraints have been imposed on area and execution
time.
Table 1 shows the experimental results for an audio/video

encoding system. Exhaustive denotes the exhaustive search
that evaluates all parameter set. Proposed denotes the
proposed method using branch and bound. # of explored
arch., # of explored nodes, and # of estimation. show the
number of explored architectures, explored nodes in
parameter set search tree, and the number of estimations,
respectively. Time for exploration shows the time needed
for exploration. Because the exploration of an exhaustive
search takes a very long time, it is calculated as the product
of the average time needed to estimate one architecture

(0.011 second), and the number of estimations. The results
of the exhaustive search and the proposed method are the
same because the proposed method only prunes the nodes
that are not the optimal solutions. It is almost impossible to
explore the design space by exhaustive search. The
experimental results show that the proposed method can
greatly reduce the time needed for exploration.

5. Conclusion

In this paper, SoC Architecture Explorer is introduced.
SoC Architecture Explorer explores the architecture
candidates by tracing the parameter set search tree and then
pruning it. All possible architecture candidates are explored,
and some architectures are identified as having a trade-off
relation between the hardware area and the application
execution time. The Experimental results show that SoC
Architecture Explorer provides fast design space
exploration for IP-based design.

Demonstration

In our booth, SoC Architecture Explorer will appear with a
small system example. We will show how to make the
system-level model with our editor and how the tool
provides design quality of architecture candidates.

References

[1] K. Ueda, K. Sakanushi, Y. Takeuchi and M. Imai,

"Architecture-level Performance Estimation for IP-
based Embedded Systems", In Proceedings of
Design Automation and Test in Europe (DATE
2004), pages 1002-1007, February 2004.

[2] K. Ueda, K. Sakanushi, Y. Takeuchi, and M. Imai,
"Architecture-level performance estimation method
based on system-level profiling", IEE Proceedings
Computers & Digital Techniques, vol. 152, no. 1,
pages 12-19, January 2005.

Acknowledgement

This work is partly supported by STARC (Semiconductor
Technology Academic Research Center).

Contact Person

Professor Masaharu Imai,
Graduate School of Information Science and
Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, JAPAN
Tel: +81-6-6879-4520, Fax: +81-6-6879-4524

Method # of explored arch. # of explored nodes # of estimation Time for exploration
Exhaustive 795x1010 1,590x1010 795x1010 2,521years

Proposed 7,769,925 101,384,625 18,654,516 52hours

Table1: Experimental Results.

