
FAST INSTRUCTION CACHE ANALYZER SOFTWARE TOOL
Nikolaos Kroupis1, Alexandros Bartzas1, Stylianos Mamagkakis2, Dimitrios Soudris1

nkroup@ee.duth.gr
1 Department of Electrical and Computer Engineering – Democritus University of Thrace – Greece

2 IMEC vzw, Leuven, Belgium
http://vlsi.ee.duth.gr/

Abstract

The Fast Instruction Cache Analyzer Tool explores the
instruction cache memory of DSP applications within
reasonable time and high accuracy, for variable cache
parameters, without simulation.

1. Introduction

The main goal of the tool is to provide fast and accurate
estimates of the number of (-micro) instructions and the
instruction cache miss rate on a programmable embedded
platform, during the early design phases. An automatic
software tool named Fast Instruction Cache Analyzer
(FICA) is developed using the programming language PHP
using a MySQL database to store its data. We have selected
PHP and MySQL because we intend to provide a web-
based tool, which will be available to the researchers. FICA
uses specific information which is extracted from both the
high-level code description (C code) of the DSP application
and its corresponding assembly code, without carrying out
the time-consuming procedure of simulation. FICA requires
only a single execution of the application in a general-
purpose processor and uses only the assembly code of the
targeted embedded processor.

2. FICA Software Tool

The flow graph of the tool is presented in Fig. 1. The tool
has as input only the application’s code in C language and it
corresponding assembly code of the specific programmable
core. FICA is based on the correlation between the high-
level description code of the application and its associated
assembly code. The crucial point of the tool is that the
number of conditional branches both the C code and its
assembly code is equal. Fig. 2 presents the processing steps
of FICA tool using a simple application (input) C code and
it’s corresponding assembly. First stage of the tool pinpoint
the code branches and inserts counters in C code. Executing
the new C code in general purpose system, FICA
determines the number of passes from every branch. This a
very fast procedure, because the execution is been in
general purpose system and is a platform independent stage.
The extracted execution data are stored into a database.
In the second stage, based on branch and jump instructions
of the assembly code, the tool creates the Control Flow
Graph (CFG) of the assembly code. The crucial point of the
tool is to assign the number of each branch execution to the
specific node of the CFG. The values correspond to the
assembly code, and thus it is finds how many times each
assembly branch instruction is executed. Using a

exploration technique, the tool calculate the number of
executions of every node of CFG. Adding the number of
execution of all application’s assembly instructions the total
number of executed instructions is calculated in the second
stage. Such, the number of instructions is estimated without
simulation, executing only once the application in a general
purpose system.

 Figure 1: The flow of FICA tool

The third stage of the tool is platform-dependent and
contains two steps: the creation of all the unique execution
paths of each loop, and the computation of number of
instructions and iterations associated with a unique path.
Exploring all the paths of the CFG of the algorithm, we
determine the loops and the size (in numbers of
instructions), as well as the number of executions of each
loop. Comparing the length of the path with the size of the
cache, it calculates the number of misses of each every loop
iteration. The FICA tool derives the instruction cache miss
rate for variable cache sizes and block sizes with a single
execution. Moreover, the tool presents all combinational
results of miss rates using variable parameters of L1 and L2
instruction caches.

3. Experimental Results

We adopt MIPS IV processor 64-bit running on simulation
tool. In order to evaluate the developed tool, we chose a set
of benchmarks from various digital signal processing

3
rd
 S
ta
g
e

Figure 2: The details steps of the FICA tool, using a simple

input code

applications, such as MPEG-4, JPEG, filtering and H.263.
The comparison between the results of FICA and the
simulation results is given by the average estimation error
which is about 3% for the number of executed instructions.
Assuming variable cache architectures (with L1 and L2
caches) and configurations, with variable cache and block

sizes, the estimation results of miss rate show that the
average estimation error is about 5% comparing with the
simulation results. Such, FICA exhibits high accuracy in
estimation of number of executed instructions and number
of cache misses and miss ratio. An additional crucial feature
of a high-level estimation procedure is the fact that the
proposed approach is faster thousands of times than the
corresponding simulation procedure. This feature enables
the designers to explore the cache configuration within a
reasonable time (multi-level caches). Table I presents the
comparison results between estimated and simulator
measurements for variable cache sizes.

Table I. Instruction cache miss rate using the simulator
Simplescalar and the estimation tool FICA

Cache Size Miss Rate
Block size 8 bytes 128 256 512 1K 2K 4K

Aver.
error

Simplesc. 100.0 99.8 99.2 76.8 0.1 0.0 FS
FICA 100.0 99.9 99.6 71.9 0.1 0.0

0.9 %

Simplesc. 97.3 92.5 66.4 2.8 1.6 1.5 HS
FICA 96.0 87.5 60.8 3.4 3.2 0.5

2.5 %

Simplesc. 99.7 93.1 15.9 1.9 1.8 0.0 3SLOG
FICA 99.4 96.9 7.8 0.9 0.5 0.0

2.4 %

Simplesc. 99.9 99.6 96.7 31.7 0.8 0.2 PHODS
FICA 100.0 98.8 96.1 22.7 1.0 1.0

1.8 %

Simplesc. 99.9 98.9 79.9 0.5 0.1 0.0 SS
FICA 99.2 98.4 75.0 0.1 0.0 0.0

1.1 %

Simplesc. 90.0 47.9 1.8 1.0 0.1 0.0 Wavelet
FICA 92.7 43.3 0.4 0.2 0.0 0.0

1.6 %

Simplesc. 100.0 94.3 61.4 16.9 0.3 0.1 Cavity
Detector FICA 100.0 94.6 45.7 5.1 0.2 0.1

4.7 %

Simplesc. 99.4 89.1 46.5 9.6 0.4 0.0 CQ
FICA 98.8 84.2 31.4 2.0 0.0 0.0

4.8 %

Simplesc. 98.7 95.7 87.7 7.1 0.5 0.2 FFT
FICA 100.0 96.0 75.3 9.4 6.0 6.0 4.6 %

4. Conclusion

Concluding, the total estimation time cost using FICA tool
is much smaller than that obtained by the trace-driven
techniques and simulations. Compare FICA and simulation
based approaches is faster in a factor more than 100 times.
FICA is suitable for performing high-level instruction cache
exploration with a very high accuracy reducing the time
cost of the simulation. FICA estimates the cache miss rate,
without the simulation of the application and reduces the
estimation time by orders of magnitude compared to the
simulation process.

5. References

[1] N. Kroupis, S. Mamagkakis, and D. Soudris, “An
Estimation Methodology for Designing Instruction Cache
Memory of Embedded Systems,” in ESTIMedia 2006,
Fourth IEEE Workshop on Embedded Systems for Real
Time Multimedia, October 26-27, 2006, Seoul, Korea

Acknowledgement

The project is co-funded by the European Social Fund &
National Resources - EPEAEK II - PYTHAGORAS II.

