FAST INSTRUCTION CACHE ANALYZER SOFTWARE TOOL
Nikolaos Kroupi$, Alexandros BartzasStylianos Mamagkakis Dimitrios Soudris

nkroup@ee.duth.gr

! Department of Electrical and Computer EngineerinBemocritus University of Thrace — Greece
2 IMEC vzw, Leuven, Belgium
http://visi.ee.duth.gr/

Abstract

The Fast Instruction Cache Analyzer Tool explores t
instruction cache memory of DSP applications within
reasonable time and high accuracy, for variable feac
parameters, without simulation.

1. Introduction

The main goal of the tool is to provide fast andusate
estimates of the number of (-micro) instructionsl dhe
instruction cache miss rate on a programmable eddzbd
platform, during the early design phases. An autmma
software tool named Fast Instruction Cache Analyzer
(FICA) is developed using the programming languBgé
using a MySQL database to store its data. We heleeted
PHP and MySQL because we intend to provide a web-
based tool, which will be available to the researshFICA
uses specific information which is extracted froothbthe
high-level code description (C code) of the DSPliapfion

and its corresponding assembly code, without aagrgiut

the time-consuming procedure of simulation. FICAuiees
only a single execution of the application in a eah
purpose processor and uses only the assembly dathe o
targeted embedded processor.

2. FICA Software Tool

The flow graph of the tool is presented in FigThe tool
has as input only the application’s code in C laggiand it
corresponding assembly code of the specific prograbte
core. FICA is based on the correlation betweenhiigé-
level description code of the application and #saiated
assembly code. The crucial point of the tool ist tthe
number of conditional branches both the C code ited
assembly code is equal. Fig. 2 presents the priogesteps
of FICA tool using a simple application (input) @de and
it's corresponding assembly. First stage of thé pampoint
the code branches and inserts counters in C cogeuling
the new C code in general purpose system, FICA
determines the number of passes from every braridk.a
very fast procedure, because the execution is heen
general purpose system and is a platform indepérstage.
The extracted execution data are stored into ddata

In the second stage, based on branch and jumpidtistis
of the assembly code, the tool creates the Corftlol
Graph (CFG) of the assembly code. The crucial pafithe
tool is to assign the number of each branch execut the
specific node of the CFG. The values correspondhéo
assembly code, and thus it is finds how many tieesh
assembly branch instruction is executed. Using a

exploration technique, the tool calculate the numbk

executions of every node of CFG. Adding the numtdfer
execution of all application’s assembly instrucidhe total
number of executed instructions is calculated engacond
stage. Such, the number of instructions is estidaiehout

simulation, executing only once the applicatioraigeneral
purpose system.

Executiol

Store Data into
Database

F e e e — — -

< =

For every loop

Application . gee Application
[ibed in C sumplescalar: MIPS Input
— i E—
| [—_—— -
— ilE \,
C Parser Tool ! Assembly Code nd |
: (insert counters) : Parser 2" Stage |
|
| L—
| GNU gee : |
: | < > :
Executable |
| program | Trace_ Calculate !
| Exploration et number of !
! Executions y |
| nl & 0 Instructions 1
|
I ' |
i |
|
|
|

e . 2

|
|
1°t Stage | search all the w |
________ unique 3 Stage |
execution paths |
|
|
< b :
Cache Miss Rate || Cache 1
. |
r —
e S 7

executed instructions Output

cache miss rate B

Figure 1: The flow of FICA tool

The third stage of the tool is platform-dependent a
contains two steps: the creation of all the unigyecution
paths of each loop, and the computation of number o
instructions and iterations associated with a umigath.
Exploring all the paths of the CFG of the algorithwe
determine the loops and the size (in numbers of
instructions), as well as the number of executiohgach
loop. Comparing the length of the path with theesif the
cache, it calculates the number of misses of eaetydoop
iteration. The FICA tool derives the instructiorcha miss
rate for variable cache sizes and block sizes wisingle
execution. Moreover, the tool presents all comlpomeai
results of miss rates using variable parametets afnd L2
instruction caches.

3. Experimental Results
We adopt MIPS IV processor 64-bit running on sirtiata

tool. In order to evaluate the developed tool, Wwese a set
of benchmarks from various digital signal procegsin

,—~ Input: C code -~ - Counter Insertion 1
R ey el
B soroSpajain)| | | REMSOASTOIIE output ------, s
s || sounter[llt+; | | !
@ £ L ddE<d || Results after code execution |
=) ! i 1 i
S 1 | | 1Branch1 |
n | ! | } Type : loop '
- bommmmm oo | | Counter 1: 10 executions.i-.}
12 | |Brang e
N 1 Type : i 1
[Counter2: 3 executions...
77777777777777 Vol T
Step 1 : Pinpoint the Step 2 : Gounter insertion
code branches Step 3 : Code executions
(a)
Assembly
1w $3,16($£p)
addus?, 52,53
W—$2, 20TSTDT
SL
wi §2 120 (SE0)
wi 33 {14 ($£d)
ulbu 4,93 ¢
2d (d£5)
(] Step 2 : Create the Control Flow Graph
(=) Step 1 : Pinpoint the Step 3 : Associate counter values with
S assembly code branches the execution tree nodes
n
o
2
N
1
1w $2,20($fp)| 7
Tw $3,16(3fp)| 7
AAAUNZ 2, 7
¢ 7
7
3
3
3
3
Total Executed Instructions : 161
Step 4 : Computation of #
executions of every instruction Output : Number of executed instructions

1" unique path
3iterations

Qutput
Direct Mapped Cache with
Block Size 8 bytes:
Using Equations (1){5) for
variable cache sizes:
Num_References = 157

MIPS IV 64 bits
1instr. = 8 bytes

Consists of : 15 instr.
Size : 120 bytes
Iterations : 3

I

I

I

I

I

I

i

| | Unique Path 1:
! Cache Size: 32 bytes
| Num_Misses; = 45

} Num_Misses;= 112

| Miss rate = 100%

|

I

!

Cache Size: 64 bytes

g - Num_Misses, = 42
@ | | 2™ unique path | Num_Misses;= 112
* || 7iterations | Miss rate = 98%
(7 a2 I
s | S g Cache Size: 128 bytes
4 | e $305005s | | Unique Path 2: ize: 128
| ™ @asem | | Consists of : 16 instr. | | Num_Misses, =15
! 258 I | Size : 128 bytes Num_Misses: =16
| N | | iterations :7 Miss rate = 20%
I =
| o ! Cache Size: 256 bytes
! E | Num_Misses; =15
| o ! Num_Misses;= 16
1 3 | Miss rate = 20%
|
[
Step 1 : Extract all the unique Step 2: Computation gytput : Number of
execution paths of assembly code of # of instructions instruction cache misses and
loo} and # iterations of
ps. 0 miss rate
each execution path
{c)
Figure 2: The details steps of the FICA tool, usirgimple
input code

applications, such as MPEG-4, JPEG, filtering ang68.
The comparison between the results of FICA and the
simulation results is given by the average estiomagrror
which is about 3% for the number of executed irtdionms.
Assuming variable cache architectures (with L1 drd
caches) and configurations, with variable cache lalodk

sizes, the estimation results of miss rate show tha
average estimation error is about 5% comparing With
simulation results. Such, FICA exhibits high accyran
estimation of number of executed instructions anthimer
of cache misses and miss ratio. An additional affeature
of a high-level estimation procedure is the facittthe
proposed approach is faster thousands of times tian
corresponding simulation procedure. This featurab&s
the designers to explore the cache configuratiotimia
reasonable time (multi-level caches). Table | pres¢he
comparison results between estimated and simulator
measurements for variable cache sizes.

Table I. Instruction cache miss rate using the ktou
Simplescalar and the estimation tool FICA

Miss Rate Cache Size Aver.
Block sze8bytes [128 256 512 1K 2K 4K |error
ES Simplesc. [100.0 99.8 99.2 76.8 0.1 0.0

FICA 100.0 99.9 99.6 71.9 0.1 0.0/0.9%
HS Simplesc. | 97.3 925 664 28 16 15
FICA 96.0 87.5 60.8 3.4 3.2 0.5|25%
Simplesc. | 99.7 931 159 1.9 1.8 0.0
38LOG FICA 99.4 969 7.8 0.9 0.5 0.0{24%
Simplesc. | 99.9 99.6 96.7 31.7 0.8 0.2
PHODS FICA 100.0 98.8 96.1 22.7 1.0 1.0|1.8%
ss Simplesc. | 99.9 989 799 05 0.1 0.0
FICA 99.2 984 75.0 0.1 0.0 0.0/1.1%
Simplesc. | 90.0 479 1.8 1.0 0.1 0.0
Wavelet FErEn 92.7 433 04 0.2 0.0 00]L6%
Cavity |Simplesc. | 100.0 94.3 61.4 169 0.3 0.1
Detector | FICA 100.0 94.6 45.7 5.1 0.2 0.1|4.7%
co Simplesc. | 99.4 89.1 465 9.6 04 0.0
FICA 98.8 84.2 314 2.0 0.0 0.0/48%
EET Simplesc. 98.7 95.7 87.7 7.1 05 0.2
FICA 100.0 96.0 753 9.4 6.0 6.0/4.6%

4. Conclusion

Concluding, the total estimation time cost using4ltool
is much smaller than that obtained by the traceedri
techniques and simulations. Compare FICA and sitioula
based approaches is faster in a factor more thartid@s.
FICA is suitable for performing high-level instrian cache
exploration with a very high accuracy reducing thme
cost of the simulation. FICA estimates the cachssmate,
without the simulation of the application and reesiche
estimation time by orders of magnitude comparedht®
simulation process.

5. References

[1] N. Kroupis, S. Mamagkakis, and D. Soudris, “An
Estimation Methodology for Designing Instruction dhie
Memory of Embedded Systems,” in ESTIMedia 2006,
Fourth IEEE Workshop on Embedded Systems for Real
Time Multimedia, October 26-27, 2006, Seoul, Korea

Acknowledgement

The project is co-funded by the European SocialdF&n
National Resources - EPEAEK Il - PYTHAGORAS II.

