
CONSTRAINT VERIFICATION USING A CONSTRAINT ENGINEERING SYSTEM

A. Schäfera, J. Freuerb, K. Hahna, W. Nebelb, R. Brücka

andre.schaefer@universität-siegen.de
a IMT - University of Siegen, Germany; b University Oldenburg, Germany
a http://www.rs.uni-siegen.de, b http://www.informatik.uni-oldenburg.de/

Abstract

This demo presents a proof of concept of a meta-
verification tool for the tool-independent definition and
verification of constraints within the analog design flow.
1. Overview
The automatic consideration and verification of design
constraints becomes increasingly important due to their
continuous growth in number and complexity.
With the Constraint Engineering System (CES) we present
a new verification method based on a unified representation
of constraints. The Constraint Engineering System provides
flexible, extensible, and multi-tool definitions of complex
constraints and high order verification tasks. The CES does
not replace existing verification and simulation tools. It
rather offers a method of combining these tools for
verification purposes [1].
The Constraint Engineering System is based on the
approaches of Constraint Logic Programming (CLP).
Describing constraints as predicates within Horn clauses [2]
leads to a universal representation of constraints on an
abstract, formal meta-level. To overcome semantical and
representational differences between constraints from
different sources a transformation model is defined that
completely maps constraints into a universal constraint
representation.
One of the key benefits of the CES is its extensibility by
external verification and simulation tools. A tool can be
integrated into the CES using an interface enabling the
access to the data and the functionality of the tool. The
interface translates the syntax and semantics of constraints
as well as all verification task relevant design data to the
internal clause-based representation. This mechanism
provides a logical meta-level that links all connected tools
together. Existing constraint information stored in a
constraint management system can be utilized easily.

2. Constraint Engineering System
The Constraint Engineering System is based on the
concepts of Constraint Logic Programming. CLP is an
extension to logical programming languages like PROLOG
that incorporate constraint resolution [3,4,5]. It has been
developed in the preceding two decades from a branch of
linear programming (LP) and basic concepts of artificial
intelligence (AI).
The CES is a meta-verification-tool. Subverification tasks
are delegated to external tools. The CES must ensure the
possibility of a seamless integration of upcoming
constraints. Therefore, one of the main targets of the CES is
to provide a consistent representation of constraint data
suitable for multiple tools. For this purpose, a formal

description based on the Horn calculus (logic calculus) [2]
was developed.
2.1 Architecture
The core of the CES consists of a CLP kernel as described
by Jaffar in [3] (see Figure 1). Rules utilized by the CES
form the knowledge base of the logic inference system. It is
classified into a static and a dynamic part. The static part of
the knowledge base is formed by rules that remain
unchanged for all verification tasks. The dynamic part
provides the design specific and therefore changing data
and constraints.

Figure 1: Architecture of the CES

The knowledge base is semantically divided into the
following components:
Tool integration kit (TIK):
External tools export design data, constraints and
verification capabilities which form the dynamic part of the
knowledge base. The specific functionality of each tool is
combined in a tool integration kit.
Constraint rule file and support rules:
The constraint rule file contains the set of possible queries.
The constraint rule file is part of the static knowledge base
of the CES. It depends on external tools and their support
rules. High order clauses form so-called support rules. In
this manner, support rules can be used as an abstraction of
frequently performed queries. The support rules are also
part of the static knowledge base. This mechanism enables
an easy posibility to access the underlying knowledge base.

Both knowledge base parts are based on the same formal
representation within the CES. Thus, the CES can access
every knowledge aspect in a uniform way. This is essential
for the multi-tool representation and handling of
constraints. The rulefile-editor is no part of the CLP-core. It
is an individual tool to creates and edit constraint-rulefile

CES
 CLP-core

dynamic
knowledge

base
TIK

to tool A

tool A
(DFII)

TIK
to tool B

tool B
(topEx)

constraint-
rule-files

static
knowledge base

solver
constraint
solver X

solver Y

rulefile-
editor

test-
bench

and rules of the dynamic knowledge base, which specify a
TIK. The test-bench is a tool to review the CES, which uses
the CLP-Core to solve given rules.
The following examples show the integration of a layout
tool whereas the introduced clauses are compiled within the
layout TIK. This kit exports clauses as part of the dynamic
knowledge base in order to identify layout elements such as
nets, polygons and pins. The rules use the identification
scheme to uniquely address external tools and are defined
as facts without a clause goal.

net(layout, NetID).
polygon(layout, PolyID).
pin(layout, PinID).

The rule polygon in this example holds true if there is a
polygon within the design provided by the layout tool that
has the id PolyID. Properties of pins (coordinates) and of
polygons (coordinate lists) as well as their ownerships are
determined by the following clauses.
These clauses do not require a tool ID since the tool can be
implicitly resolved by the passed object ids (PinID, PolyID
and NetID).

coordinate(PinID, (X, Y)).
coordinate(PolyID, [(X1,Y1), (X2,Y2),...]).
netPin(NetID, PinID).
netPolygon(NetID, PolyID).

The following clause netLayout is defined as static
knowledge within the support rules stating that any net
consists of pins and polygons. It compiles the given layout
elements into tuples of the form (pinlist, polylist).

netLayout(NetID, (PinList, PolyList)) :-
setof(Pos, (pin(NetID, PinID),
coordinate(PinID, Pos)), PinList),
setof(Pos, (polygon(NetID, PolyID),
coordinate(PolyID, Pos)), PolyList).

Complex meta-verification can therefore be generically
expressed without declaring a specific tool. Required tools
are automatically selected by the CES from a list of
registered tools. Generic verification tasks allow their
application in similar verification areas and thus provide for
the reuse of these tasks.

3. Demonstration
The CES currently includes TIKs to the Cadence Design
Framework II (DFII), to a demo resistance extractor and to
a demo net layout topology extractor.
For a star-shaped net parasitic point-to point resistances
RC,Pn exist between the net pins Pn, and the net center C. The
following design constraint should be met:

All resistors RC,Pn within star-shaped nets must hold:
RC,Pn ≤ Rmax

The TIK that provides access to the resistance extractor
(with tool ID resEx) supplies the clause resistance that
computes the resistance between two coordinates (X1,Y1)
and (X2,Y2) within a given net.

resistance(resEx,(PinList, PolyList),
(X1,Y1), (X2,Y2), R).

The clause topologyClass provided by the topology
extractor TIK (topEx) classifies a given net into one of the
categories star, tree or mesh. The topology class star is

additionally parameterized by the center (X, Y) of a star-
shaped net.

topologyClass(topEx, (PinList, PolyList), Class).
To perform the verification task the verification clause
valStarRes is added to the constraint rule file as part of the
dynamic knowledge base to realize the meta verification
task (RC,Pn ≤ Rmax within star-shaped nets). This verification
task is therefore formally independent from the deployed
tools.

valStarRes(NetID, PinID, Rmax) :-
R>Rmax, net(_, NetID),
netLayout(NetID, L),
topologyClass(_, L, star(C)),
netPin(NetID, PinID),
coordinate(PinID, P),
resistance(_, L, C, P, R).

The previously defined clause valStarRes can now be used
for a verification with e.g. R = 5Ω using the verification
query valStarRes(N,P,5). The CES determines all resulting
combinations of net IDs N and pin IDs P which fulfil the
valStarRes predicate. This result states that every resistance
RC,Pn of each obtained tuple N, P fails the verification
requirements.

4. Conclusion
The CES is capable of processing verification tasks on a
much higher level of abstraction than usually found in
existing verification tools. The abstraction of constraints
allows the processing of new classes of verification
problems that previously could not sufficiently and
comprehensively be addressed with conventional
verification approaches. First tests of practical applications
in analog system design tasks prove the power, flexibility,
practicability, and potential of our approach.
In future we will focus our work on optimization strategies
to further minimize unnecessary verification tasks and to
parallelize independent verification tasks.

5. References
[1] J. Freuer, G. Jerke, A. Schäfer, K. Hahn, R. Brück, A.
Nassaj, W. Nebel, „Ein Verfahren zur Verifikation
hochkomplexer Randbedingungen beim IC-Entwurf,
ANALOG, 2006
[2] A. Horn. On sentences which are true of direct unions of
algebras. J. Symbolic Logic, 16:14–21, 1951.
[3] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The
CLP(R) Language and System. ACM Trans. on
Programming Languages and Systems, 14(3):339–395, July
1992.
[4] J. Cohen. Constraint logic programming languages.
Commun. ACM, 33(7):52–68, 1990
[5] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A
Platform for Constraint Logic Programming. Technical
report, IC-Parc, Imperial College, London, U.K., 1997

6. Acknowledgement
The present work was promoted in parts by the BMBF
project LEONIDAS+ (conveyor sign: 01M3074).

