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Abstract 

This demo presents a proof of concept of a meta-
verification tool for the tool-independent definition and 
verification of constraints within the analog design flow. 
1. Overview 
The automatic consideration and verification of design 
constraints becomes increasingly important due to their 
continuous growth in number and complexity.  
With the Constraint Engineering System (CES) we present 
a new verification method based on a unified representation 
of constraints. The Constraint Engineering System provides 
flexible, extensible, and multi-tool definitions of complex 
constraints and high order verification tasks. The CES does 
not replace existing verification and simulation tools. It 
rather offers a method of combining these tools for 
verification purposes [1].  
The Constraint Engineering System is based on the 
approaches of Constraint Logic Programming (CLP). 
Describing constraints as predicates within Horn clauses [2] 
leads to a universal representation of constraints on an 
abstract, formal meta-level. To overcome semantical and 
representational differences between constraints from 
different sources a transformation model is defined that 
completely maps constraints into a universal constraint 
representation.  
One of the key benefits of the CES is its extensibility by 
external verification and simulation tools. A tool can be 
integrated into the CES using an interface enabling the 
access to the data and the functionality of the tool. The 
interface translates the syntax and semantics of constraints 
as well as all verification task relevant design data to the 
internal clause-based representation. This mechanism 
provides a logical meta-level that links all connected tools 
together. Existing constraint information stored in a 
constraint management system can be utilized easily.  

2. Constraint Engineering System  
The Constraint Engineering System is based on the 
concepts of Constraint Logic Programming. CLP is an 
extension to logical programming languages like PROLOG 
that incorporate constraint resolution [3,4,5]. It has been 
developed in the preceding two decades from a branch of 
linear programming (LP) and basic concepts of artificial 
intelligence (AI).  
The CES is a meta-verification-tool. Subverification tasks 
are delegated to external tools. The CES must ensure the 
possibility of a seamless integration of upcoming 
constraints. Therefore, one of the main targets of the CES is 
to provide a consistent representation of constraint data 
suitable for multiple tools. For this purpose, a formal 

description based on the Horn calculus (logic calculus) [2] 
was developed. 
2.1 Architecture  
The core of the CES consists of a CLP kernel as described 
by Jaffar in [3] (see Figure 1). Rules utilized by the CES 
form the knowledge base of the logic inference system. It is 
classified into a static and a dynamic part. The static part of 
the knowledge base is formed by rules that remain 
unchanged for all verification tasks. The dynamic part 
provides the design specific and therefore changing data 
and constraints. 
 

 
Figure 1: Architecture of the CES 

 
The knowledge base is semantically divided into the 
following components: 
Tool integration kit (TIK):  
External tools export design data, constraints and 
verification capabilities which form the dynamic part of the 
knowledge base. The specific functionality of each tool is 
combined in a tool integration kit. 
Constraint rule file and support rules:  
The constraint rule file contains the set of possible queries. 
The constraint rule file is part of the static knowledge base 
of the CES. It depends on external tools and their support 
rules. High order clauses form so-called support rules. In 
this manner, support rules can be used as an abstraction of 
frequently performed queries. The support rules are also 
part of the static knowledge base. This mechanism enables 
an easy posibility to access the underlying knowledge base. 
 
Both knowledge base parts are based on the same formal 
representation within the CES. Thus, the CES can access 
every knowledge aspect in a uniform way. This is essential 
for the multi-tool representation and handling of 
constraints. The rulefile-editor is no part of the CLP-core. It 
is an individual tool to creates and edit constraint-rulefile 
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and rules of the dynamic knowledge base, which specify a 
TIK. The test-bench is a tool to review the CES, which uses 
the CLP-Core to solve given rules. 
The following examples show the integration of a layout 
tool whereas the introduced clauses are compiled within the 
layout TIK. This kit exports clauses as part of the dynamic 
knowledge base in order to identify layout elements such as 
nets, polygons and pins. The rules use the identification 
scheme to uniquely address external tools and are defined 
as facts without a clause goal. 

net(layout, NetID). 
polygon(layout, PolyID). 
pin(layout, PinID). 

The rule polygon in this example holds true if there is a 
polygon within the design provided by the layout tool that 
has the id PolyID. Properties of pins (coordinates) and of 
polygons (coordinate lists) as well as their ownerships are 
determined by the following clauses.  
These clauses do not require a tool ID since the tool can be 
implicitly resolved by the passed object ids (PinID, PolyID 
and NetID). 

coordinate(PinID, (X, Y)).  
coordinate(PolyID, [(X1,Y1), (X2,Y2),...]).  
netPin(NetID, PinID).  
netPolygon(NetID, PolyID).  

The following clause netLayout is defined as static 
knowledge within the support rules stating that any net 
consists of pins and polygons. It compiles the given layout 
elements into tuples of the form (pinlist, polylist). 

netLayout(NetID, (PinList, PolyList)) :-  
setof(Pos, (pin(NetID, PinID),  
coordinate(PinID, Pos)), PinList),  
setof(Pos, (polygon(NetID, PolyID),  
coordinate(PolyID, Pos)), PolyList). 

Complex meta-verification can therefore be generically 
expressed without declaring a specific tool. Required tools 
are automatically selected by the CES from a list of 
registered tools. Generic verification tasks allow their 
application in similar verification areas and thus provide for 
the reuse of these tasks. 

3. Demonstration 
The CES currently includes TIKs to the Cadence Design 
Framework II (DFII), to a demo resistance extractor and to 
a demo net layout topology extractor. 
For a star-shaped net parasitic point-to point resistances 
RC,Pn exist between the net pins Pn, and the net center C. The 
following design constraint should be met:  

All resistors RC,Pn within star-shaped nets must hold:  
RC,Pn ≤ Rmax  

The TIK that provides access to the resistance extractor 
(with tool ID resEx) supplies the clause resistance that 
computes the resistance between two coordinates (X1,Y1) 
and (X2,Y2) within a given net. 

resistance(resEx,(PinList, PolyList),  
(X1,Y1), (X2,Y2), R).  

The clause topologyClass provided by the topology 
extractor TIK (topEx) classifies a given net into one of the 
categories star, tree or mesh. The topology class star is 

additionally parameterized by the center (X, Y) of a star-
shaped net. 

topologyClass(topEx, (PinList, PolyList), Class).  
To perform the verification task the verification clause 
valStarRes is added to the constraint rule file as part of the 
dynamic knowledge base to realize the meta verification 
task (RC,Pn ≤ Rmax within star-shaped nets). This verification 
task is therefore formally independent from the deployed 
tools. 

valStarRes(NetID, PinID, Rmax) :-  
R>Rmax, net(_, NetID),  
netLayout(NetID, L),  
topologyClass(_, L, star(C)),  
netPin(NetID, PinID),  
coordinate(PinID, P),  
resistance(_, L, C, P, R).  

The previously defined clause valStarRes can now be used 
for a verification with e.g. R = 5Ω using the verification 
query valStarRes(N,P,5). The CES determines all resulting 
combinations of net IDs N and pin IDs P which fulfil the 
valStarRes predicate. This result states that every resistance 
RC,Pn of each obtained tuple N, P fails the verification 
requirements.  

4. Conclusion 
The CES is capable of processing verification tasks on a 
much higher level of abstraction than usually found in 
existing verification tools. The abstraction of constraints 
allows the processing of new classes of verification 
problems that previously could not sufficiently and 
comprehensively be addressed with conventional 
verification approaches. First tests of practical applications 
in analog system design tasks prove the power, flexibility, 
practicability, and potential of our approach. 
In future we will focus our work on optimization strategies 
to further minimize unnecessary verification tasks and to 
parallelize independent verification tasks. 
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