
CandoGen – A Property-Based Model Generator

Martin Schickel, Volker Nimbler, Martin Braun, Hans Eveking

{schickel,nimbler,braun,eveking}@rs.tu-darmstadt.de

Computer Systems Lab – Darmstadt University of Technology – Germany

http://www.rs.tu-darmstadt.de/

Abstract

Property-based design has multiple applications in the
domain of formal verification. We have developed a tool
capable of automatically generating an exact
implementation from a set of finite PSL properties.

1. Introduction

Automated design from properties has become more
prominent during the last decade and quite rightly so.
During many stages of the design process, a component’s
formal specification is already present, although the actual
implementation is not. In order to obtain a preliminary
working model during the early design stages, a hardware
designer will still have to sit down and build it. Work that
will be more or less thrown away, once the design process
reaches a more advanced stage. Property-based design can
solve this problem by providing a simple means to
automatically generate a model from the specification. It
will neither be optimized nor be described in a sophisticated
way, but still, it is a working model.

CProp 1CProp 1 CProp 2CProp 2 CProp 3CProp 3 CProp 4CProp 4 CProp 5CProp 5

Architectural PropertyArchitectural Property

Cando-
Object 1
Cando-
Object 1
Cando-
Object 1

Cando-
Object 2
Cando-
Object 2
Cando-
Object 2

Cando-
Object 3
Cando-
Object 3
Cando-
Object 3

Cando-
Object 5
Cando-
Object 5
Cando-
Object 5

Cando-
Object 4
Cando-
Object 4
Cando-
Object 4

Master 1Master 1 Slave 2Slave 2Slave 1Slave 1Master 2Master 2 ArbiterArbiter

Figure 1: Verification using Cando-Objects

Models like these can also be used as property-based
abstractions during the actual verification process: Once a
component has been verified by a set of properties, the
particular component can be replaced by an abstraction
generated from the properties used to verify the component.

All parts of the original component which are not covered
by the properties used to generate the model will be
abstracted, hopefully reducing the abstraction in size. Also,
the hardware generated from properties is mostly much
more verification-friendly than optimized circuits that
possibly also incorporate self-test-logic. Replacing
components by these abstractions will therefore allow

verifying larger systems than before. Figure 1 shows, how
that may work for an ARM AMBA AHB Bus.

2. Cando-Objects

The hardware generated by the model generator will –
contrary to what other projects, e.g. Prosyd [1], strive to –
incorporate any ambiguity contained within the property
set. If a signal value is not specified in certain states or
logical ambiguities are present (e.g. a∨ b), then every
possible behavior must be able to occur. Only by doing this,
the abstraction will be fault-conserving, because eliminating
the ambiguities corresponds to the introduction of new
properties. We call this type of abstraction Cando-Object,
because it “can do anything, show any behavior, which is
not expressively forbidden” by the properties it was
generated from.

Besides the already mentioned usage of Cando-Objects as a
property-based abstraction of components, they can be used
as early prototypes and even as property-based
implementations, if the property-sets contain only a low
level of ambiguity. Also, the result of the generation
process reveals information on the signal assignment
coverage.

In addition to the generation of VHDL models we aim at
generating C++ models for software/hardware-co-
simulation. By generating the early simulation models from
verification properties, we can later easily make sure that
the actual implementation corresponds to the model by
simply verifying the properties.

3. The CandoGen Tool

In order to generate hardware from properties, we need two
different information sets: For one, we need the properties
to generate the hardware from. Currently two types of
property specification language are supported by our tool:
PSL and OneSpin Solution’s ITL. Due to the way
properties are transformed, the tool only supports properties
covering a finite time window, which includes all types of
safety properties (LTL: G), but excludes liveness properties
(LTL: F).

Secondly, a black box description of the component is
needed, since property specification languages do not
incorporate information on signal types, signals, constants
and the like. The information can be obtained directly from
a VHDL description, be it a complete component

description which the user wants to abstract or an original
black box, which the user wants to fill with the functionality
specified by the properties.

direct control
inputs

Combinatorial
Net

Sampler

Shift-
Register

Registers

CLK

sampled
inputs

direct data inputs

MUX

direct
outputs

state signals/
clocked
outputs

direct control
inputs

Combinatorial
Net

Sampler

Shift-
Register

Shift-
Register

RegistersRegisters

CLK

sampled
inputs

direct data inputs

MUX

direct
outputs

state signals/
clocked
outputs

Figure 2: Internal Layout of a Cando-Object

The properties are then normalized by applying the
algorithm described e.g. in [2]. This normalization
procedure reveals potential inconsistencies between
properties and disjoins them such that only one property
specifies a particular signal’s assignment in a particular
state. While the specification is broken down to the bit-level
if necessary to generate unambiguous signal assignments,
the goal is to have properties at the bit-vector-level, since
only then arithmetic operations can be represented
compactly. After the normalization, which is the most time-
consuming part of the whole process, is completed, a
VHDL description of the Cando-Object is generated. All of
this is done by the CandoGen tool, which was developed
during the last three years for an x86-Linux platform. The
resulting internal design always corresponds to the one
displayed in Figure 2, which is basically a Mealy machine
reordered for better feature visibility.

c) Some states non-determined

Source Properties:

Generated Circuit:

x
clk

c

a 1

0x_randominput

ttt axc =→ +− 12

d) Logically non-determined

Source Properties:
Generated Circuit:

111 ++− ∨→ ttt yxc

yy_r

&

x_r

1
x

1

0

clk

c
b) Fully non-determined

x

Source Properties: none

Generated Circuit:

x_randominput

ttt bxc =→¬ +− 12

a) Fully determined

Source Properties:

Generated Circuit:

ttt axc =→ +− 12

clk

c

a 1

0b
x

Figure 3: Realization of Non-determinism

The reason the above design deviates from the standard
Mealy Machine description is to be able to incorporate
asynchronous resets. While the properties normally deal
with transitional systems, asynchronous resets require a
combinatorial circuit to propagate a signal change within
the same clock cycle. This is dealt with by providing two
sets of signal assignments: One describes the assignment in
case no reset will occur within the next cycle, the other
describes the assignments in case a reset occurs. The reset
signal (or, in general, any input signal not sampled at a
clock edge) will then control a multiplexer that selects one
of the assignment sets.

Another difficulty is the realization of non-determinism
within a circuit. Since specifications (and therefore
property-sets) mostly do not define every signal assignment
in every situation, it often happens that a signal value is
actually don’t care. In order to allow all possible behaviors,
additional input signals will be used to generate signal
values for the cases, where a signal value is not defined. If
the specification is logically non-determined (e.g. ‘x or y
must be set’), free inputs will also be used. Only in this
case, the random signals will be overridden by a particular
valid result in case the signal assignment is not valid. Figure
3 illustrates the various ways to accommodate the various
kinds of non-determinism.

4. Experimental Results

We have conducted experiments on various industrial
designs, including ARM’s AMBA AHB, the PCI Local Bus
and a MIPS core.
For the complete AHB master the generation of a Cando-
Object takes around 15s, for an AHB slave it is around 7s.

5. Conclusion

Although property-based design has not yet become a very
important technique in the design and verification process,
we have shown that there are variable promising
applications that might be useful to supplement or replace
tools currently in place. The CandoGen tool is a tool able to
generate models from finite verification properties written
in PSL/ITL. Future work includes the synthesis of complete
processors in order to generate working models from the
specifications of the memory interface and the assembly
language.

5. References

[1] PROSYD Project Deliverable 2.1/1: Property-based
Design and Implementation, 5/2005, www.prosyd.org

[2] M. Schickel, V. Nimbler, M. Braun, H. Eveking: On
Consistency and Completeness of Property-Sets: Exploiting
the Property-Based Design Process. In: Proc. of FDL, 2006

[3] M. Schickel, V. Nimbler, M. Braun, H. Eveking: An
Efficient Synthesis Method for Property-Based Design in
Formal Verification. In: Sorin Huss (Ed.): Advances in
Design and Specification Languages for Embedded
Systems, p. 163-182, Kluwer Acad. Publishers,
Boston/Dordrecht/London, 2007, to appear

Acknowledgement

The research leading to the development of this tool was
conducted within the scope of the FEST project, funded
jointly by the German ministry of Research and Education
and industry partners.

