
Redefis: using dynamically reconfigurable instruction set architecture
processor for SoC

1 Overview of the Redefis project

The growing complexity of systems and its related produc-
tion cost of chips have imposed big constraints in SoC de-
sign of new systems. The classical approach of using gen-
eral purpose processors (GPP) mostly are unable to fit the
tight performance and power constraints. The tighter TAT
and TTM constraints for a whole ASIC design solution is
not affordable either due to its complexity and cost.

The Redefis system is an SoC design platform for high
level, fast implementation of ASIPs1.The platform is com-
posed of a reconfigurable instruction-set processor and a set
of design tools. The developed processors can be used as
flexible co-processors in a MPSoC2 systems or as stand-
alone processor/engines.

Compared to other approaches based of reconfigurable
processor, The Redefis project targets processors where the
ISA (Instruction Set Architecture) is fully redefinable and
not extended. Redefis also proposes a design flow based on
standard C programs (no HDL writing is necessary).

In next section we present the Redefis design tool chain
and in the last one, a case-study architecture of an ISA dy-
namically reconfigurable processor (Vulcan).

In the demonstration we are going to present the full de-
sign flow as well the Vulcan working board executing the
newly generated ISA for the DES encryption algorithm.

2 The Redefis design tool chain

The Redefis design tool chain is used both to compile an
input C program (”the application” written in high level C)
and to produce an ISA specifically optimized for the given
input application. The chain flow of the design tools is
given in the figure bellow.

The input is a C program (like other GPPs), and the out-
put is both the binary code of the program and the newly
defined ISA as configuration binary streams.

1Application Specific Instruction Set Processors
2Multi Processor SoC

An important tool in the design flow is the ISAGen (In-
struction Set Architecture GENerator) which will produce a
new ISA specifically optimized for the input C program; it
will also preprocess the C program to reflect the generated
set of instructions. Then a retargetable compiler compiles
the resulting C program into the target reconfigurable pro-
cessor’s object code.

3 Vulcan: an ISA dynamically recon-
figurable processor

Vulcan is an implementation of a dynamically reconfig-
urable processor where the ISA is fully redefinable (at com-
pile time) and the execution of its instructions is made re-
configuring the processor data-path at every cycle. The fig-
ure gives an overview of its architecture.

Vulcan’s computation power and flexibility is due to its
RDP (Reconfigurable Data Path) module which is a recon-
figurable network of processing elements (PE). Additional
calculation units are present for more demanding arith-
metic computations. The controller is responsible for fetch-
ing instructions, reconfiguring the RDP and handling flow
changes (e.g. branching).

In the processor every ”custom instruction” (identified
from the application’s source code) is associated with one
configuration of the RDP. The full set of configurations
loaded into the configuration memory is the current ISA
of the processor (defined at compile time).

A typical execution cycle of Vulcan is performed in 3
steps:
• The controller fetches an instruction and reconfigures

the RDP.
• The RDP fetches the data and passes it to be computed

in the RDP (for every custom instruction).
• The RDP writes back the result of the calculation.

We have implemented an emulator of the Vulcan proces-
sor on an FPGA board and a chip implementation of the
processor as well.


