Embedded System-Level Platform Synthesis and
Application Mapping — ESPAM: Design Flow Overview

Todor Stefanov

Hristo Nikolov

Ed Deprettere

Leiden Embedded Research Center
Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands

{nikolov,stefanov,edd} @liacs.nl

EsPAM is a tool for automated multiprocessor system design and
implementation. ESPAM moves the design specification from RTL to
a higher, so called System-level of abstraction. Starting from sys-
tem level platform and application specifications, a multiprocessor
platform is automatically synthesized and the application is system-
atically mapped onto it in an automated way. Our system design
methodology is depicted as a design flow in Figure 1. There are three
levels of specification in the flow. They are SYSTEM-LEVEL speci-
fication, RTL-LEVEL specification, and GATE-LEVEL specification.
The SysSTEM-LEVEL specification consists of three parts:

e Platform Specification describing the topology of a platform us-
ing our system level platform model, i.e., using generic parameter-
ized system components. The components are grouped into 1) Pro-
cessing Components, 2) Memory Components, 3) Communication
Components, 4) Auxiliary Components. Using the platform model
a system designer can specify many alternative platform instances
easily.

e Application Specification describing an application as a Kahn Pro-
cess Network (KPN). A KPN specification exposes task-level par-
allelism available in an application and makes the data communi-
cation between tasks explicit. A KPN is a network of concurrent
autonomous processes that communicate data in a point-to-point
fashion over unbounded FIFO channels, using a blocking-read syn-
chronization primitive.

e Mapping Specification describing the relation between all processes
and FIFO channels in Application Specification and all components
in Platform Specification. By changing the Platform and Mapping
Specifications different alternative implementations for an applica-
tion can be obtained easily.

The SYSTEM-LEVEL specification is given as input to ESPAM.
First, EsPAM constructs a platform instance following the platform
specification and runs a consistency check on that instance. The plat-
form instance is an abstract model of a multiprocessor platform be-
cause at this stage no information about the target physical platform
is taken into account. The model defines only the key system com-
ponents of the platform and their attributes. Second, EsPAM refines
the abstract platform model to an elaborate (detailed) parameterized
RTL model which is ready for an implementation on a target physical
platform. We call this refinement process platform synthesis. The re-
fined system components are instantiated by setting their parameters
based on the target physical platform features. Finally, ESPAM cre-
ates program code for each processor in the multiprocessor platform
in accordance with the application and mapping specifications.

The output of EsPaM, namely a RTL-LEVEL specification of a
multiprocessor system is a model that can adequately abstract and
exploit the key features of a target physical platform at the register
transfer level. It consists of four parts:

I System-Level
| Specification

| BT Level Program code HW description Platform topology Auxiliary :
| pecification for processors of IP Cores description information |
-

Executable (A)
Gate-Level IP Processor P1 1P Core

e Crossbar

IP Processor P2

Figurel: EsPAM System Design Flow.

e Platform topology description defining in great detail the proces-
sors network (multiprocessor platform).

e Hardware descriptions of IP cores containing predefined and cus-
tom IP cores used in 1). EsPAM selects predefined IP cores (proces-
sors, memories, etc.) from Library IP Cores, see Figure 1. Also, it
generates custom IP cores needed as a glue/interface logic between
components in the platform.

e Program code for processors — to execute the application on the
synthesized multiprocessor platform, ESPAM generates program
source code files for each processor in the platform.

o Auxiliary information containing files which give tight control on
the overall specifications, such as defining precise timing require-
ments and prioritizing signal constraints.

With the descriptions above, a commercial synthesizer can convert
a RTL-Level specification to a Gate-Level specification, thereby gen-
erating the target platform gate-level netlist, see the bottom part of
Figure 1. This Gate-Level specification is actually the system imple-
mentation. The current prototype version of EspAM facilitates au-
tomated multiprocessor platform synthesis and application mapping
using Xilinx VirtexIl-Pro FPGAs. EspAM uses the Xilinx Platform
Studio (XPS) tool as a back-end to generate the final bit-stream file
that configures a specific FPGA. We use the FPGA platform technol-
ogy for prototyping purposes only. Our EspAM is general and flexi-
ble enough to be targeted to other physical platform technologies. A
real-life industrially-relevant application, namely Motion-JPEG en-
coder, has been fully implemented by using the EsPAM and XPS de-
sign tools. A simple design space exploration has been conducted for
Motion-JPEG multiprocessor systems featuring up to 8 MicroBlaze
processors connected through a crosshar switch or in a point-to-point
network. The exploration is based on real multiprocessor system im-
plementations generated by our EsPAM tool. Therefore, for all these
multiprocessor systems we have HW/SW demos.

