
Weaver-DC: Asynchronous Micropipeline Synthesis Flow
ECE, Boston University

The problem

Asynchronous design has long been proposed as a
solution to clock and timing convergence related
problems but [so far] never occupied any significant
niche on the market. The biggest problem of its
acceptance has been identified in the absence of
industrial quality EDA support. With relatively low
academic resources rich EDA support cannot
realistically be created from scratch. Even if it would be
feasible the paradigm shift (in specification formats,
synthesis methods and operational principles etc) is too
big comparing to immediate benefits.

The solution

Chameleon tools take advantage of industry standard
synthesis engines to obtain RTL implementation from
high-level HDL specification and further re-synthesize
the RTL into self-timed clockless implementation.
When the RTL is synthesized using an RTL library
known to the tool the circuit functionality can be easily
identified and low computational complexity
substitution-based re-implementation can be applied.

By using local handshaking instead of global
synchronization self-timed implementations well sustain
manufacturing and environmental variations thereby
increasing yield and robustness. Graceful performance
degradation at lower voltage simplifies the performance
power consumption trade-off implementation.

The tool
Weaver-DC – is a chameleon flow for synthesis of

asynchronous micropipeline circuits from high-level
HDL specifications. Weaver-DC works in integration
with Synopsys Design Compiler used for RTL synthesis
and solving fan-out violations in the final netlist.

The tool consists of a set of TCL scripts guiding the
synthesis flow and implementing the user commands
functionality and the Weaver engine written in C++ and
using SAVANT VHDL compiler to interface with the
RTL synthesis engine using VHDL and Synopsys
Liberty parser to Support standard library specifications.

Internally Weaver-DC uses VHDL but the Synopsys
Design Compiler front end allows handling variety of
specification formats.

Weaver-DC features
Weaver is under development and the on-going work

is primarily targeted at supporting the area-performance
trade-off by allowing variable pipeline granularity and
at architectural power saving techniques. Currently (in
version prerelease v0.94) the flow features:
• micropipeline implementations is shown to be flow

equivalent to the RTL implementation synthesized
by the RTL synthesis engine i.e. the sequences of

data values appearing on any given micropipeline
data channel to the sequence of values settled
during setup intervals on the channels (data wires)
in the original RTL implementation

• low computational and spatial complexity re-
implementation algorithms

• support for various micropipeline pipelining
protocols and implementations including binary
dual-rail and ternary single-rail data encoding
through library approach

• automatic gate-level pipelining with hierarchical
slack matching (similar to retiming in RTL) and
micropipeline optimization in many cases improves
the circuit performance proportionally to its depth

• test bench automation
• industry standard Synopsys Design Compiler front

end provides familiar tool interface (Weaver-Dc
extends the set of DC commands and runs within its
shell) and allows support for variety of input
specification formats with no changes or extensions

• micropipeline library specification using industry
standard Synopsys Liberty extensible format
extended with micropipeline specific attributes

• simulation automation (with Mentor Graphics
ModelSim)

• automatic library installation minimizes the library
developer effort

Micropipeline libraries
Although Weaver-DC supports compound

micropipeline stages (stages composed of more than one
physical library cell) and covers the vast majority of
handshaking protocols as of the prerelease v0.94
Weaver does not provide any support for stage delay
calculation or any control over routing. That makes it
safest to use the protocols with delay insensitive (DI)
inter-stage communication. Quasi-delay insensitive
(QDI) micropipelines comprise one very extensively
researched group of protocols and implementations well
suited for the Weaver flow.

We developed “proof of concept” QDI micropipeline
libraries: dual-rail with dynamic domino-style logic
implementation (similar to PCHB), balanced dual rail-
dynamic library for side channel attack resistant
implementations and an experimental ternary logic
based library with single-rail data channel using TSMC
0.18um process. UCL made available their Single-Track
and PCHB libraries through MOSIS (at this point we
are unaware if those have been tried with Weaver flow).

With unbalanced libraries experimental results on
average show x6 area overhead and fixed close to
700MHz performance due to the gate level pipelining
depending primarily on the library cells cycle time.

© Alexander Smirnov, Boston University 2006 http://async.bu.edu/weaver

