
RTL2ASC
Description of the Functionality

Richard Buchmann and Alain Greiner
E-mail: richard.buchmann@lip6.fr, alain.greiner@lip6.fr

1 RTL2ASC Overview

RTL2ASC is a SystemC model generator. That tool
converts any VHDL source code at RTL level to a Sys-
temC code. Generated models are described as a set of
synchronous finite state machine and are cycle accurate.
Its goal is to accelerate the hardware simulation by allow-
ing cycle based simulation. Efficiency is obtained through
the use of the Finite State Machine description (Figure 1).

OUTPUTS

INPUTS

MEALY
GENERATION
FUNCTION

GENERATION
MOORE

FUNCTION

TRANSITION
FUNCTION

STATES

Figure 1. Finite State Machine Modeling

RTL2ASC inputs are in a RTL language subset. This
subset is fully compatible with the IEEE VHDL’87.

RTL2ASC output is a SystemC subset including :

• core class :
sc_module, sc_signal, sc_in, sc_out, sc_inout...

• basic data type :
sc_uint only

Generated SystemC source code uses only
SC_METHOD process type. That source code runs
up to 10x times faster on using SystemC-2.1 and
SystemCASS[1] simulators.

2 Installation

Copy RTL2ASC files, then run the Makefile.

The distribution is as follow :

• src : Source files
• bin : Binaries for linux distribution
• examples :

– miscellaneous test benchs : Some simple hard-
wares to test some very basic VHDL construc-
tions.

– HADAMARD sequencer : Finite state machine
to drive Hadamard data path.

3 Generator Execution

To use RTL2ASC generator, you just need to execute
the binary as follow :
../bin/rtl2asc [-h] [-s] [-d] [-f] [-x] <source without file ex-
tension>

• h : display help

• v : verbose mode

• d : save data dependencies into dot file

• f : drive rtlfig (ALLIANCE structure)

• x : save structures into XML file

• s : drive to SystemC model

4 A Semantic Approach

RTL2ASC uses a semantic analysis to convert from
RTL to cycle accurate abstraction level.

Front-End part reads source input and builds up the
internal representation. The current front-end reads only
RTL VHDL code.

The internal representation allow us to describe the par-
allel execution of the set of processes, and signal assign-
ments. So, processes are compiled into control graphs[2].
Control graph relies on Petri nets.

We apply some transformations to get a reduced con-
trol graph. This graph allows us to extract a finite state
machine with a set of unique assignments.

Back-End part writes the finite state machine into files.
The current back-end writes only SystemC code.

References

[1] R. Buchmann, F. Petrot, and A. Greiner. Fast cy-
cle accurate simulator to simulate event-driven behav-
ior. In Proceeding of The 2004 International Con-
ference on Electrical, Electronic and Computer En-
gineering (ICEEC’04), pages 35–39, Cairo, Egypt,
2004. ASIM/LIP6, IEEE.

[2] Bawa Rajesh K. Jacomme Ludovic, Pétrot Frédéric.
Formal analysis of single wait vhdl processes for se-
mantic based synthesis. In 12th IEEE International
Conference on VLSI Design, pages 151–156, 1999.


