RTL2ASC
Description of the Functionality

Richard Buchmann and Alain Greiner
E-mail: ri chard. buchmann@i p6.fr, al ai n. grei ner @i p6. fr

1 RTL2ASC Overview

RTL2ASC is a SystemC model generator. That tool
converts any VHDL source code at RTL level to a Sys-
temC code. Generated models are described as a set of
synchronous finite state machine and are cycle accurate.
Its goal is to accelerate the hardware simulation by allow-
ing cycle based simulation. Efficiency is obtained through
the use of the Finite State Machine description (Figure 1).

INPUTS

TRANSITION
FUNCTION '

STATES

MEALY
GENERATION
FUNCTION

MOORE
GENERATION
FUNCTION

OUTPUTS

Figure 1. Finite State Machine Modeling

RTL2ASC inputs are in a RTL language subset. This
subset is fully compatible with the IEEE VHDL’87.
RTL2ASC output is a SystemC subset including :

e core class :

sc_module, sc_signal, sc_in, sc_out, sc_inout...
e basic data type :

sc_uint only

Generated SystemC source code wuses only
SC_METHOD process type. That source code runs
up to 10x times faster on using SystemC-2.1 and
SystemCASS[1] simulators.

2 Installation
Copy RTL2ASC files, then run the Makefile.

The distribution is as follow :

e src: Source files
e bin: Binaries for linux distribution
e examples:

— miscellaneous test benchs : Some simple hard-
wares to test some very basic VHDL construc-
tions.

— HADAMARD sequencer : Finite state machine
to drive Hadamard data path.

3 Generator Execution

To use RTL2ASC generator, you just need to execute
the binary as follow :
./bin/rtl2asc [-h] [-s] [-d] [-f] [-X] <source without file ex-
tension>

e h: display help

e v : verbose mode

e d: save data dependencies into dot file
o f: drive rtlfig (ALLIANCE structure)
e X : save structures into XML file

e s : drive to SystemC model

4 A Semantic Approach

RTL2ASC uses a semantic analysis to convert from
RTL to cycle accurate abstraction level.

Front-End part reads source input and builds up the
internal representation. The current front-end reads only
RTL VHDL code.

The internal representation allow us to describe the par-
allel execution of the set of processes, and signal assign-
ments. So, processes are compiled into control graphs[2].
Control graph relies on Petri nets.

We apply some transformations to get a reduced con-
trol graph. This graph allows us to extract a finite state
machine with a set of unique assignments.

Back-End part writes the finite state machine into files.
The current back-end writes only SystemC code.

References

[1] R. Buchmann, F. Petrot, and A. Greiner. Fast cy-
cle accurate simulator to simulate event-driven behav-
ior. In Proceeding of The 2004 International Con-
ference on Electrical, Electronic and Computer En-
gineering (ICEEC'04), pages 35-39, Cairo, Egypt,
2004. ASIM/LIP6, IEEE.

[2] Bawa Rajesh K. Jacomme Ludovic, Pétrot Frédéric.
Formal analysis of single wait vhdl processes for se-
mantic based synthesis. In 12th IEEE International
Conference on VLS Design, pages 151-156, 1999.



