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1 RTL2ASC Overview

RTL2ASC is a SystemC model generator. That tool
converts any VHDL source code at RTL level to a Sys-
temC code. Generated models are described as a set of
synchronous finite state machine and are cycle accurate.
Its goal is to accelerate the hardware simulation by allow-
ing cycle based simulation. Efficiency is obtained through
the use of the Finite State Machine description (Figure 1).
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Figure 1. Finite State Machine Modeling

RTL2ASC inputs are in a RTL language subset. This
subset is fully compatible with the IEEE VHDL’87.

RTL2ASC output is a SystemC subset including :

• core class :
sc_module, sc_signal, sc_in, sc_out, sc_inout...

• basic data type :
sc_uint only

Generated SystemC source code uses only
SC_METHOD process type. That source code runs
up to 10x times faster on using SystemC-2.1 and
SystemCASS[1] simulators.

2 Installation

Copy RTL2ASC files, then run the Makefile.

The distribution is as follow :

• src : Source files
• bin : Binaries for linux distribution
• examples :

– miscellaneous test benchs : Some simple hard-
wares to test some very basic VHDL construc-
tions.

– HADAMARD sequencer : Finite state machine
to drive Hadamard data path.

3 Generator Execution

To use RTL2ASC generator, you just need to execute
the binary as follow :
../bin/rtl2asc [-h] [-s] [-d] [-f] [-x] <source without file ex-
tension>

• h : display help

• v : verbose mode

• d : save data dependencies into dot file

• f : drive rtlfig (ALLIANCE structure)

• x : save structures into XML file

• s : drive to SystemC model

4 A Semantic Approach

RTL2ASC uses a semantic analysis to convert from
RTL to cycle accurate abstraction level.

Front-End part reads source input and builds up the
internal representation. The current front-end reads only
RTL VHDL code.

The internal representation allow us to describe the par-
allel execution of the set of processes, and signal assign-
ments. So, processes are compiled into control graphs[2].
Control graph relies on Petri nets.

We apply some transformations to get a reduced con-
trol graph. This graph allows us to extract a finite state
machine with a set of unique assignments.

Back-End part writes the finite state machine into files.
The current back-end writes only SystemC code.
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