
Custom Dynamic Memory Allocation Tool (DMMR-MATISSE)

S. Mamagkakis, D. Atienza, C. Poucet, F. Catthoor, D. Soudris and J. Mendias

In this demonstration, we introduce a novel
tool support to automatically create and
explore the trade-offs in the Dynamic Memory
(DM from now on) allocation parameters.
With our fully automated technique we
generate Pareto-optimal DM allocator
configurations for the embedded system
designer to use according to the application's
specific needs. For the first time, our
automation support gives embedded system
designers a real choice between tens of
thousands of highly customized DM allocators
instead of the very restricted group of a few
OS-based DM allocators. The Custom
Dynamic Memory Allocation Tool was
developed in collaboration of IMEC research
center with DUTH and DACYA universities.
The most significant contribution is the
development of a framework to automatically
create, map in the memory hierarchy and test
any number of DM allocation configurations
(see Figure 1). The only input that our tool
requires is the list of arrays with the parameter
values to be explored for the different
configurations. Additionally, our tool can map
the DM allocator pools in any memory
hierarchy. For example, we can declare that a
dedicated pool for 74-byte blocks must be
placed onto the L1 64 KB scratchpad memory,
while a general pool and a dedicated pool for
1500-byte blocks must use the 4 MB main
memory. Then, our tool takes care of the DM
allocator implementation to support the
mapping of these pools in the corresponding
memory hierarchy layers. To this end, we have
developed a C++ library that includes more
than 50 modules, which can be linked in any
way with the use of templates and Mixins
inheritance to create custom DM allocators.
The tool works in a plug-and-play manner and
the dynamic application's source code is not
altered to call the appropriate DM allocator
from the library. The next step of our tool is
the automated selection of Pareto-optimal
configurations and involves the simulation (i.e.
execution) of our dynamic application for each
one of the different DM allocator
configurations. These configurations were
already defined, constructed and implemented
automatically in the previous step. We have
implemented profiling tools to test and profile
all the different DM allocator configurations
for the defined memory hierarchy, and get
results for mem. accesses, mem. footprint and
energy consumption for each level of the

memory hierarchy. The results are provided
either on a GUI or in a format easy to import to
Excel or Gnuplot. Then, the Pareto-optimal
curves to evaluate the tradeoffs of the
configurations can be provided automatically
with the use of our tool (as shown in the upper
part of Figure 1). The tool (written in Perl and
O'Caml) parses all the experimental results
data and provides Pareto-optimal curves for the
chosen metrics (as shown in the lower part of
Figure 1). Note the importance of our fast
parsing of the profiling data (less than 20
seconds), which can reach Gigabytes for one
single configuration.

Figure 1. Tool flow and GUI

