
1. Motivation
The introduction of high-level synthesis (HLS), a.k.a

behavioral synthesis, promised to automate the transforma-
tion of a design from system/behavioral level to register-
transfer (RT) level as efficiently as the introduction of logic
synthesis automated transformation from logic to physical
level. Although HLS has been successfully used in many
cases and there exist rather many HLS tools, it is still not as
indispensable today as layout or logic synthesis. Experi-
ments with designs that are dominated not by the data flow
but control flow and data transfers have pointed out that
the traditional data flow oriented synthesis strategy does
not work well. A different approach is needed which would
take into account the main characteristics of control and
memory intensive systems (CMIST).

The newest developments both in design automation
and design for testability areas are pointing out the need for
tools that are modifiable to add new sub-tasks and even to
integrate tasks that traditionally have been solved sepa-
rately. Also, the existing commercial tools are not always
good for academic activities because it is very hard, if not
impossible, to get into details of the synthesis process:
• there must exist a way to show to the students how a

HLS tool works step-by-step; and
• researchers need rather often a possibility to modify an

algorithm in the synthesis process, or even to modify
the execution order of steps.
xTractor, has been developed to test HLS methodology

of CMIST applications. The nature of CMIS applications
defined the overall synthesis flow and transformations
needed to convert a behavioral description of a design into
RTL description. [1][2][3]

2. Synthesis Flow
IRSYD Generator - compiles a subset of VHDL or C

into CDFG. Only bit-vector like data types are allowed.
Data-Path Transformations - only the most obvious

ones have been implemented - constant and variable prop-
agation, and simplification of operations with constants.

Memory Extractor lists arrays and/or maps them onto
memories, and adds memory access operations.

State Marker generates states while traversing the con-
trol flow of the IRSYD. It uses segment-based scheduling.

Allocator/Binder allocates and binds operations and
variables into functional units and registers.

RTL HDL Generator - generates RT level VHDL or
Verilog code for Logic Level synthesis tools.

There exist four pre-defined synthesis flow styles with
different degrees of designer activity.

3. Target Architecture
Modern logic synthesis tools can handle rather complex

descriptions but for fast and efficient synthesis the different
styles should be segregated. CMIST applications have very
few large operations worth of reusing. The rest of the
design consists of operations that can be very efficiently
optimized by logic optimization techniques. Keeping arith-
metic operations free of implementation details allows a
better exploitation of the back-end (logic synthesis) tools.

Four different architectures, selected by the designer,
can be generated:
• merged FSM and DP - data-path is a part of the FSM;
• separate FSM and DP - the traditional architecture;
• separate FSM and DP, large functional units extracted -

allows to optimize arithmetic units separately; and
• separate FSM and sliced DP, large functional units

extracted - the slicing allows to divide large DP into
smaller parts to simplify back-end logic optimization.

4. Structure and Component Tools
xTractor consists of an interactive shell, written in Tcl/

Tk, and component tools, written in C/C++, can be ported
to several platforms (e.g., Linux, Solaris). The shell orga-
nizes the overall synthesis flow.

The eight component tools execute the steps of the syn-
thesis flow and/or analyze CDFG (estimation, integrity
checking, etc.). Additional tools can be added by modifying
setup file(s) of the shell.

5. References
[1] P. Ellervee, “High-Level Synthesis of Control and

Memory Intensive Applications.” Ph.D. Thesis ISRN
KTH/ESD/AVH--2000/1--SE, Stockholm, 2000.

[2] P. Ellervee, “xTractor: An Academic High-Level Syn-
thesis Tool for Control and Memory Intensive Applica-
tions.” The 20th NORCHIP Conference, Copenhagen,
Denmark, pp.,253-258, Nov. 2002.

[3] “xTractor,” URL: “http://mini.li.ttu.ee/~lrv/xtractor/”

xTractor: An Academic High-Level Synthesis Tool
for Control and Memory Intensive Applications

Peeter Ellervee
Department of Computer Engineering, Tallinn University of Technology,

Raja 15, 12618 Tallinn, Estonia
phone: +372 620 2258, fax: +372 620 2246, e-mail: lrv@cc.ttu.ee

