
Micro-Profiler : A Fine-grained Application Profiler for
ASIP Design

Current Application Specific Instruction set Processor
(ASIP) design methodologies are mostly based on itera-
tive architecture exploration that uses Architecture Descrip-
tion Languages (ADLs) and retargetable software develop-
ment tools. However, for improved design efficiency, ad-
ditional pre-architecture exploration tools are required to
help narrow-down the huge design space and making coarse-
grained Instruction Set Architecture (ISA) decisions before
detailed ADL modeling. Extensive application code pro-
filing is the key in such early design stages. Based on a
novel code instrumentation technology, we present a micro-
profiling approach that fills the current gap between source-
level and instruction-level profilers and combines their ad-
vantages w.r.t. speed and accuracy.

The proposed micro-profiler (µP) is part of an advanced
ASIP design flow that builds on state-of-the-art ADL based
architecture exploration tools like [2, 3] (fig. 1). We assume
the application C source code is given, and an ASIP needs
to be designed or customized for the application. In the
pre-architecture stage, the designer needs to determine key
dynamic execution statistics for early decisions on the ISA
and the memory subsystem. This includes e.g. operation ex-
ecution frequencies, cache hit rates, frequently used C data
types together with their dynamic min/max values, as well
as bit width of arithmetic operands and constants. Obvi-
ously, these data are extremely helpful in selecting the right
accelerator functional units or designing an initial ISA. The
µP determines these data by executing the C application
code on the host, after automatic instrumentation.

The collected statistics may be used in two ways. A GUI
front end of the µP presents the data to the designer in tab-
ular and graphical form. In this scenario, the µP acts as
a stand-alone workbench tool, guiding the designer during
development of an initial ADL processor model. A set of
retargetable software tools such as C compiler, assembler,
linker, loader and instruction set simulator are then auto-
matically generated from the ADL model for fine-grained
(micro-architecture level) design space exploration. The fi-
nal hardware implementation is developed (or automatically
generated from the ADL model) if all the design constraints
are met.

In another (more automated) usage scenario, the profil-

.

C source

Instruction Set
Specialization

Existing Processor
Models

VLIW

RISC

Existing Processor
Models

VLIW

RISC
Assembler

C-compiler

Linker

Profiler

Application

Simulator Assembler

C-compiler

Linker

Profiler

Application

Assembler

C-compiler

Linker

Profiler

Application

Simulator

ADL Based Architecture Exploration

µP

Manual Design

Automatic
Customization

Figure 1: µP in an enhanced ADL based ASIP de-
sign flow

ing data are passed to an ISA synthesis tool. This tool ap-
plies an optimization algorithm similar to [1] in order to
synthesize a limited number of complex custom machine
instructions for highest speedup, based on a weighted op-
eration execution profile. It generates ADL code for cus-
tom instructions that can be linked to existing ADL proces-
sor templates, e.g. a RISC core. This offers a direct path
to micro-architecture level exploration and implementation
with existing tools.

1. REFERENCES
[1] K. Atasu, L. Pozzi, P. Ienne: Automatic

Application-Specific Instruction-Set Extensions under
Microarchitectural Constraints, DAC, 2003

[2] LISATek products: http://www.coware.com
[3] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt A.

Nicolau: EXPRESSION: A Language for Architecture
Exploration through Compiler/Simulator
Retargetability, DATE, 1999


