
tudapc — Bounded Model Checker Using Property Based
Automated Abstractions

Ingo Scḧafer

Dept. of Electrical and Computer Engineering
Darmstadt University of Technologie

schaefer@rs.tu-darmstadt.de

Abstract. Bounded Model Checking offers the possibility to proof the correctness of an implementation of a digital
hardware system with respect to a formal specification. However, due to computational complexity, this technique is
typically limited to the verification of different system blocks instead of whole digital hardware systems. To enhance
the capabilities, abstraction techniques were developed, eg. [1]. This contribution introduces an experimental Bounded
Model Checker called tudapc which applies automatic abstraction techniques.

Overview
Model Checking using tudapc is done in the following
steps:

1. Generation of a Model to examine

2. Formulation of the property to check

3. Creation of the abstract model & proof

4. Examination of the result

The creation of the abstract model and the proof itself are
fully automated, whereas the user is responsible for the cre-
ation of design and property. If the property is disproven, a
diagnosis is presented which helps the user in debugging the
model and / or the property. Figure 1 shows the connections
between the different parts.

Property

Counter Example

Abstraction

zChaff

Alliance

FSM

tudapc

vhdl others

Figure 1: Overview

Models and Frontends
tudapc uses final state machines (FSMs) for representation
of the model in question. These FSMs can be derived by
synthesis of hardware description languages such as verilog
or vhdl. Currently we are using [2] for this step, which en-
ables the use of many common VHDL circuits.

Properties
In contrast to most common Bounded Model Checkers, tu-
dapc does not check the reachability of an error state during
an increasing number of time steps starting from the initial
state. tudapc does check for a specific boolean relation be-
tween signals belonging to a limited number of consecutive
steps. This check does not start with the initial state, in fact

the initial state is no longer part of the model. An example
of the property language used is diplayed in figure 2. The
language is very intuitive and semantically similar to timing
diagrams widely used in informal specifications.

if statei@t = idle and
req i@t = ’1’

then granto@t+1=’1’;

Figure 2: Example Property

Abstracting Model Checker
The abstracting model checker tudapc itself is working
without much user interaction. The input consists of a de-
sign and a property which are used to build an abstraction
that is sufficient for the (dis-)proof of the property but still
as small as possible. As an underlying proof technique, the
satisfiability solverzChaff[3] is used. If computational re-
sources are not exceeded, the model checker either reports
the proof or the disproof of the property.

Output
If a property fails, a signal trace is produced that describes
a situation in which the model violates the property. This
trace can be viewed with any vcd-viewer and helps un-
derstanding the faulty situation and correcting the design
and / or the property.

Experimental Results
tudapc can be used to evaluate different abstraction tech-
niques. During tests, major improvements in memory con-
sumption compared to a simple cone of influence reduction
were observed using more advanced techniques. The cone
of influence of the properties used during the experiments
was between 20k and 1000k Gates.

References
[1] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu and

H. Veith. Counterexample-guided Abstraction Refine-
ment. In Computer Aided Verification, pages 154-169,
2000.

[2] Alliance VLSI CAD system, Université Pierre et Marie
Curie, Paris.

[3] Z. Fu, Y. Mahajan, S. Malik. New Features of the
SAT’04 Versions of zChaff. InContest Booklet to
SAT’04 Competition, Vancouver, 2004.


