
SystemCASS
Description of the Functionality

Richard Buchmann and Alain Greiner
E-mail: richard.buchmann@lip6.fr, alain.greiner@lip6.fr

1 SystemCASS Overview

SystemCASS is a simulator that executes models de-
scribed in SystemC language 10x times faster than the
SystemC simulation kernel. Its goal is to provide cy-
cle based simulation of systems built upon hardware and
software components, in order to evaluate performances
(hardware/software partitioning, system validation, early
software development).

TTY 3TTY 2TTY 1

MIPS 1 MIPS 2 MIPS 3MIPS 0

TTY 0

MicroNetwork

TIMER

RAM

VCI

VCI

Interruptions

Figure 1. Typical embedded system build
around VCI interfaces.

SystemCASS simulates a SystemC netlist of prede-
fined and/or user defined components. The components
used to validate the methodology are part of the SoCLIB
library. The SoCLIB library contains efficient models that
are VCI, bit and cycle accurate. Efficiency is obtained
through the use of the Finite State Machine description
(Figure 2).

OUTPUTS

INPUTS

MEALY
GENERATION
FUNCTION

GENERATION
MOORE

FUNCTION

TRANSITION
FUNCTION

STATES

Figure 2. Finite State Machine Modeling

SystemCASS accepts a SystemC language subset in-
cluding :

• core class :
sc_module, sc_signal, sc_in, sc_out, sc_inout...

• core functions :
sc_start, sc_stop, sc_simulation_time...

• basic data types :
sc_i[u]nt, sc_big[u]int...

SystemCASS doesn’t currently include standard chan-
nels, methodology-specific channels (master/slave library,
verification library) and elementary channels (timer, mu-
tex, semaphore, fifo, etc.).

2 Installation

Set SYSTEMC environment variable to the System-
CASS base directory. Run the SystemCASS Makefile.

The distribution is as follow :

• src : Source files
• includes : Header files
• lib-linux : Libraries for linux distribution
• docs : Documentation
• examples :

– soclib_date04 : An hardware timer raises some
interruptions on 4 Mips R3000 periodically.

– soclib_spg : An specific hardware configures a
simple DMA.

– soclib_date05 : Gigabit ethernet application us-
ing multiprocessor architecture.

3 Simulator Execution

To use SystemCASS simulator, you just need to in-
clude the SystemCASS headers and link to SystemCASS
library.

To debug, two ways are available :

• link to the debug library and use a C++ debugger.
• generate a trace file by using dedicated functions and

use a VCD viewer.

4 Simulator Kernel Compilation

Some macro definitions are available to accelerate the
simulation, to check the netlist, variable dependancies, the
scheduling to help on debugging and so on.

You need to modify the Options.def file and rebuild the
libraries.

5 Options

SystemCASS has two ways to compute the schedul-
ing :

• from the static sensitivity list (default)
• from the port dependancy graph[?]

(USE_PORT_DEPENDANCY defined) : The
component designer need to declare the port depen-
dancies in the constructor. Syntax : outPort(inPort);
DUMP_COMBINATIONAL_LIST2DOT definition
generates some DOT files to check dependancies.

The generated scheduling is written in code-XXX.cc
file. KEEP_GENERATED_CODE definition allows to
keep the file after simulation execution.

PRINT_SCHEDULE definition prints the scheduling
at execution time.
DUMP_SCHEDULE_STATS prints some miscellanous
statistics.
NO_STATIC_SCHEDULE disables the static scheduling.


