

RAMS: A VHDL-AMS Code Refactoring Tool Supporting High Level Analog Synthesis

Kaiping Zeng, Sorin A. Huss

Goals

- High Level Analog Synthesis
- Behavioral Model in VHDL-AMS
- Code Refactoring Methodology
 - Comprehensibility
 - Expandability
 - Reusability
 - Synthesizability

Automated Procedure

- Grammar of VHDL-AMS
- Parser Created by ANTLR
- Object Tree Generated with Castor XML
- Code Refactoring Algorithms

Signal Flow Model vs. Conservative Model

 Signal Flow Model: Pure mathematical description of input/output behavior

 Conservative Mode: Conservation laws have to be satisfied on pins

Partition of DAE

Analog Functional Primitives

Mapping of DAE to Primitives

Code Refactoring

- Dataflow-oriented
- Controlflow-oriented
- Structure-oriented
- Dislocating
- Concretizing

Tool Implementation

- Developed with Eclipse
- Java as Implementation Language

ACKNOWLEDGMENTS

Financial support from German Federal Ministry of Education and Research (BMBF) /edacentrum under Grant 01M3070E is gratefully acknowledged.

Contact: Kaiping Zeng

Integrated Circuits and Systems Laboratory

Darmstadt University of Technology, D-64289 Darmstadt, Germany zeng@vlsi.informatik.tu-darmstadt.de, Tel: (+49 6151) 16 6694, Fax:(+49 6151) 16 4810

