
POET

Power Optimization for Embedded sysTems
Software Path

Demonstrator Daniele Paolo Scarpazza

Software authors Giovanni Beltrame, Carlo Brandolese, Luca Ceresoli,
Francesco Curto, Daniele Paolo Scarpazza

Institution: Cefriel / Politecnico di Milano
Address: Via Fucini 2, I-20133 Milano (Mi), Italy
Phone: ++39-02-23954.325
Fac-simile: ++39-02-23954.254
E-mail: brandole@cefriel.it

Abstract

POET is an energy consumption estimation and optimization flow for embedded sys-
tem software. It is able to determine the energy consumption of a given project writ-
ten in C. It internally relies on three estimation flows: an assembly-level estimation
flow, a source-level estimation and optimization flow, and a library estimation flow.

The assembly-level flow comprises a C++ programmable framework, which makes
it possible to model an arbitrary architecture in terms of its functional units, and to
simulate the execution of a binary program over it, thus obtaining synthetic infor-
mation, such as average functional unit currents, amount of stalls and amount of
instruction-level parallelism per instruction class.

The source-level flow estimates the energy consumption, the execution time and
the occupied size of each C syntax element (from primary expressions up to state-
ments, lines of code and whole functions), relying on the above lower-level estimates
provided by the assembly-level flow. It is worth noting that feeding the flow with
pre-production architectural estimated data, allows to optimize source code for ex-
ecutors which have not been manufactured yet. The ability to work at the level of ab-
straction of the C source code increases the simulation speed of orders of magnitude
with respect to assembly-level simulations. The flow internally contains time/energy
gain models for a number of source code optimizing transformations and allows to
interactively perform a fast optimization space exploration on the critical code.

The library flow allows to smoothly integrate third-party binary libraries (for which
sources could not be available), and provide statistically-accurate estimates of the cost
of each library function call. The estimates rely on a set of rich semantic modellings
of function signature data types. Furthermore, thanks to a rather complete measure-
ment campaign performed on industrial prototype boards, we integrated in our es-
timation framework data and models for the most common OS-calls found in ANSI,
POSIX and proprietary operating systems.

An integrated GUI allows to automate the interaction between the flows of the
methodology, thus automatically analyzing a project, indicating critical code sections
and providing gain estimates for a number of source-code transformations.


