GAUT - A Free and Open Source High-Level Synthesis Tool

Philippe COUSSY, Ghizlane LHAIRECH-LEBRETON, Dominique HELLER, Eric MARTIN

Lab-STICC/CNRS — Universite de Bretagne-Sud— France
http://lab-sticc.friwww-gaut

Abstract

GAUT is an open source High-Level Synthesis tool. From a bit-
accurate C/C++ specification it automatically generates a RTL
architecture described in VHDL that can be used by commercial
logical synthesis tools like ISE (Xilinx), Quartus (Altera). GAUT
also generates TLM and CABA SystemC simulation models for the
SocLib virtual prototyping platform.

1. Introduction

In the SoCs context, the traditional IC design methodology relying
on EDA tools used in a two stages design flow -a VHDL/Verilog
RTL specification, followed by logical and physical synthesis- is no
more suitable [1][2]. However, the increasing complexity and the
data rates of DSP applications require efficient hardware
implementations like dedicated accelerators or coprocessors. Thus
actual SoC embedded DSP cores need new ESL level tools in order
to raise the specification abstraction level up to the «algorithmic
one » [3]. Algorithmic descriptions enable an IC designer to focus
on functionality and target performances rather than debugging
RTL. Designers spend more time exploring the design space with
multiple "what if” scenarios. They obtain a range of implementation
alternatives, from which they select the architecture providing the
best power/speed/gate count trade-off. CatapultC from Mentor
Graphics, Cynthesizer from Forte or PICO from Synfora are EDA
software tools enabling to capture such C/C++/SystemC-based
algorithmic design entries and synthesize them into an equivalent
RTL specification. GAUT is an academic and open source HLS
tool dedicated to DSP applications.

2. GAUT, a HLS tool

GAUT [4][5] takes as input a C/C++ description of the algorithm
that has to be synthesized where Algorithmic C™ class library from
Mentor Graphics can be used. This allows the designer to specify
signed and unsigned bit-accurate integer and fixed-point variables
by using bit accurate integer and fixed-fixed data types [6]. The
mandatory constraints are the throughput (specified through an
initiation interval II which represents the constant interval between
the start of successive iterations) and the clock period. Optional
design constraints are the memory mapping [7] and I/O timing
diagram [8][9]. The architecture of the hardware components that
GAUT generates is composed of three main functional units: a
processing unit PU, a memory unit MEMU and a Communication
& Interface Unit COMU (see Figure 1). The PU is a datapath
composed of logic and arithmetic operators, storage elements,
steering logic and a controller (FSM). The MEMU is composed of
memory banks and their associated controllers. The COMU
includes a synchronization processor and an operation memory
which allow to have a GALS / LIS communication interface [10].

7 N
I' _Operation memory \\
Operation word Operation address \

1
1 P 1 . .
1 Not 7’W| Not | Communication
1 empt Fop processor Bush full Unit COMU
: Enable Clock : :
1 — e I
1 1
: adder J :
.) |
' multiplier) !
1 I
I
| Port OUT H}
| 1 .
1 Processing
: L—" Unit PU
| r 1
1 1
1 1
l Mrav] 2%y || LoD
| RAM 1
! FSM . Memory Unit
Y RAM Block #1 /‘/ MEMU
~ 1 7
~ '

Figure 1: Target architecture

As described in Figure 2, GAUT first synthesizes the Processing
Unit. Then it generates the Memory Unit [7][11] and the
Communication Unit [10][12]. During the design of the PU, GAUT
initially selects arithmetic operators and after targets their best use
according to the design constraints and objectives. Then GAUT
processes the registers and memory banks, which are part of the
memory unit. The register’s optimization, which is done before the
memory optimization, is based on prediction techniques. The
communication paths will then be optimized, followed by the
optimization of the address generators of the memory banks dedicated
to the application being considered. The communication interface is
generated next by using the I/O timing behavior of the component
[8]. GAUT has been successfully used to design several complex
circuits from the telecommunication domain (see [13] and [14] for
example).

To validate the generated architecture, a test bench is automatically
generated to apply stimulus to the design and to analyze the results.
The stimulus can be incremental, randomized or user defined values
allowing automatic comparison with the initial algorithmic
specification (i.e. the “golden” model). The processing unit can be
verified alone. In this case, the memory and communication units are
generated as VHDL components whose behavior is described as a
Finite State Machine with Data path. GAUT generates not only
VHDL models but also scripts necessary to compile and simulate the
design with the Modelsim simulator. It can also compare the results
of two simulations (produced by different timing behaviors (I/O,
pipeline...).

GAUT also addresses the design of multi-mode / multi-standard
architectures [15]. Given a unified description of a set of time-wise
mutually exclusive tasks and their associated throughput constraints,
a single RTL hardware architecture optimized in area is generated
[16].

GAUT supports hierarchical synthesis and will generate multiple
clock domain architecture for low-power design on FPGA [17].

C/C++ Specification
 S—
Function
_’ Compilation

Characterization Bl
analysis
- £
—— Clustering
Component
library _ y_ -
Pid S N /,-" Allocation
4 N
/| - 1\ Scheduling
,/|_PU synthesis \
! v o Binding
r gl AR
~Thoughput | [MEMU synthesis | b, | Resizing
- Clock period 1 N
- Memory mapping \ ;] Optimization
- /0 timing diagram \\ COMU synthesis /
\ /I
A ’
N N - _ . Va
¥ OO\
VHDL RTL SystemC Simulation
Architecture Model (CABA/TLM-T)

Figure 2: Proposed high-level synthesis flow

GAUT generates an IEEE P1076 VHDL file. The VHDL file is an
input for commercial, off the shelf, logical synthesis tools like
ISE/Foundation from Xilinx, Quartus from Altera or Design
Compiler from Synopsys. GAUT generates a VHDL test-bench and
is seamlessly interfaced with Modelsim from Mentor Graphics.

SystemC simulation models can be automatically generated from
GAUT. These models are Cycle Accurate Bit Accurate (CABA)
and TLM-DT (Transaction Level Modeling with Distributed Time)
and can be used in the SocLib platform. More information of this
open platform for virtual prototyping of multi-processors system-
on-chip can be found at [18].

M=l %
@sncc s

GAUT 2.4.2 build 7/12/2009 - Lab-STICC, UBS University, Lorient (France)

A B @R [vitwidthaware Library: notecn_15b =]

= Gantt Viewer

Resuits Viewer

Figure 3: Graphical User Interface

GAUT is currently supported on Linux and Windows. A syntax-
guided text editor allows the designer to capture and analyze DSP
algorithms. An output of the analysis is a graphical view of the data
flow graph that expresses all the potential parallelism of the code.
The outputs of the synthesis are the RTL and SystemC files and a
GANTT view of hardware resources.

GAUT generates protocol specific interfaces. This enables to
execute the synthesized DSP applications in a mixed
hardware/software system. This approach has been validated with
the PALMYRE platform -based on C6x from TI and Virtex from
Xilinx- allowing to build various communication topologies.

GAUT ICs are tested with the PALMYRE platform in various
FPGAs contexts. FPGAs are stimulated by test pattern generators
and results collected with logic analyzers. Mixed software/hardware
configurations also allow to connect DSPs to/from FPGAs and
deliver/collect data on the field without the need for heavy

instrumentation. Hardware and software interfaces/libraries have been
developed to ease interconnect of processes at C code level.

Figure 4: The PALMYRE platform

GAUT also supports FSL (Fast Simplex Link) interfaces which allow
to connect customized IP to the MicroBlaze soft processor from
Xilinx.

3. References

[1] IEEE Design and Test of Computer, Special Issue on High-Level
Synthesis, July-August 2009

[2] “High-Level Synthesis: From Algorithm to Digital Circuit”, P. Coussy
and A. Morawiec, Springer, Berlin, Germany, 2008

[3] “An Introduction to High-Level Synthesis”, P. Coussy, G. Gajski, A.
Takach, M. Meredith, Special issue on High-Level Synthesis, IEEE Design
and Test of Computers, Vol. 26, Issue 4, July/August, 2009

[4] GAUT web site: http://lab-sticc.fr/www-gaut

[S] “GAUT: A High-Level Synthesis Tool for DSP Applications”, P.
Coussy, C. Chavet, P. Bomel et al., in High-Level Synthesis: From
Algorithm to Digital Circuits, Springer, 2008

[6] “Multiple Word-Length High-Level Synthesis”, P. Coussy, G. Le
Breton, D. Heller, EURASIP Journal on Embedded Systems, 2008

[7] “Memory Accesses Management During High Level Synthesis”, G.
Corre, E. Senn, P. Bomel, N. Julien, E. Martin, IEEE Int. Conference on
Hardware-Software Codesign and System Synthesis, (CODES+ISSS) 2004

[8] “A Formal Method for Hardware IP Design and Integration under /O
and Timing Constraints”, P. Coussy, E. Casseau, P. Bomel, A. Baganne, E.
Martin, ACM Trans. on Embedded Computing Systems, Vol 5, No. 1, 2006

[9] “High-Level Synthesis under I/O Timing and Memory Constraints”, P.
Coussy, G. Corre, P. Bomel, E. Senn, E. Martin, In Proc. of IEEE
International Symposium on Circuits and Systems (ISCAS), 2005.

[10] “Synchronization Processor Synthesis for Latency Insensitive Systems”,
P. Bomel, E. Martin, E. Boutillon, IEEE International Conference on Design
Automation and Test in Europe (DATE) 2005

[11] “Pipelined memory controllers for DSP applications handling
unpredictable data accesses”, B. Le Gal, E. Casseau, S. Huet, E. Martin,
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2005

[12] “A Design Methodology for Space-Time Adapter”, C. Chavet, P.
Coussy, P. Urard, E. Martin, IEEE/ACM Great Lakes Symposium on VLSI
(GLSVLSI), 2007

[13] “C-based Rapid Prototyping For Digital Signal Processing”, B. Le Gal,
E. Casseau, S. Huet, P. Bomel, C. Jego, E. Martin, in the 13th European
Signal Processing Conference (EUSIPCO), 2005.

[14] “A Methodoly for IP integration in DSP Soc: a case study of a MAP
algorithm for turbo decoder”, P. Coussy, D. Gnaédig, A. Nafkha, A.
Baganne, E. Boutillon, E. Martin, IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2004

[15] “A Design Flow Dedicated to Multi-mode Architectures for DSP
Applications”, Chavet C., Andriamisaina C., Coussy P., Casseau E., Juin E.,
Urard P., Martin E., Dans IEEE International Conference on Computer
Aided Design, ICCAD), 2007

[16] “VNS for High Level Synthesis”, P. Coussy, A. Rossi, M. Sevaux, K.
Sorensen, and K. Trabelsi. In Proceedings of 8th Metaheuristics
International Conference, MIC 2009, July 2009.

[17] “Low Power High Level Synthesis for Designing DSP Applications on
FPGA”, G. Lhairech-Lebreton, P. Coussy, Computer-Aided Network
DEsign Workshop, October, 2009

[18] https://www.soclib.fr/

